CONSTRUCTIVE MATHEMATICS AS A
PROGRAMNING LOGIC I:
SOME PRINCIPLES OF THEORY

Robert L. Constable

TR 83-554
May 1983

Department of Computer Science
Cornell University
Ithaca, New York 14853

This work was supported in part by NSF grants MCS-80-03349 and MCS-81-04018.

CONSTRUCTIVE MATEENMATICS AS A PROCRAMMING LOGIC I3
SOME PRINCIPLES OF THEORY :

Robert L. Constable

Department of Computer Science
Cornell University

Ithaca, N.Y. 14853

Abstract

The design of a programming system is guided by certain beliefs, princi-
ples and practical constraints. These considerations are not always manifest
from the rules defining the system. In this paper the author discusses some
of the principles which have guided the design of the programming logics built
at Cornell in the last decade. Most of the necessarily brief discussion con-
cerns type theory with stress on the concepts of function space and quotient

types.

Key Words and Phrases:

automated logic, combinators, Edinburgh LCF, partial recursive func-
tions, programming languages and logics, PL/CV, PRL, propositions-

as-types, quotient types, strong intemsionality, type theory.

I. Introduction

How do we choose the languages in which to express exact reasoning,
mathematics and programming? In the case of logic and mathematics, language
has evolved over a period of perhaps 2,000 years. We know enough to say that
such language is not the "God-given expression of Truth". Indeed human
genius, especially that of Ffege. has played a major role. In the case of
programming languages the period of evolution is shorter. It might appear
~ dramatically shorter, but if we consider the building of relatively rigorous

and symbolic language, then perhaps only the last 100 years are relevant even

This work was supported in part by NSF grants MCS-80-03349 and MCS-81-04018.

for mathematics and logic. Although we can learn a great deal from this
period, not many formal languages from it were meant to be used; fewer still
were in fact used. By contrast in the past 40 years hundreds of programming
languages have been created, each vying for prominence. Among these a few
dozen are serious contenders with distinct characteristics, e.g. FORTRAN,
ALGOL (60, W, 68), LISP, PL/I, ADA, etc. How then are these languages chosen?
Whét are the principles of design that make them attractive, usable and endur-
ing?

There have been studies which attempt to sort out the principles behind
such languages [32]. But not many deep principles have emerged. We can clas-
sify languages based on their control structures and make illuminating com-
parisons [9,28]. We can discuss procedure calling mechanisms and other

features of implementation. With more modern languages we can compare type

structures and mechanisms for achieving modularity and protection.

While these differences among programming languages are fascinating and
while their study may contribute to better designs and implementations, such
differences do not reveal deep principles of language value. The deeper prin-
ciples emerge at the level of programming 1ogic.1 Such logics must take a
position about the structure of the universe in which we compute, about what
is real and what actions are possible, about what is expressible and what is
true. It will happen that these deeper principles determine other aspects of
language structure and sometimes obviate the need for explanations in terms of
implementation or syntactic style. For instance, principles about the nature

of type equality may dictate that the equality relation is not decidable.

.t

As programming languages become richer, and as their definitions become more
formal, the distinction between a programming Jlanguage and a programming
logic may disappear. A theory such as M-L82 [30] is indistinguishable from
the applicative programming language described by Nordstrom [31]; the
theories V3 [13] and PRL [2] are as much programming lénguages as they are
logics. So these remarks apply to such ™"third generation™ programming

languages Qs well,

This would rule out certain approaches to syntactic type checking.

I do not claim to know the principles that determine a programming
logic's value. I am not even confident that we will ever be able to
coherently state any, but I know from our work on programming logics at Cor-
nell since 1971 that certain experiences and ideas emerged as significant and
have shaped the systems we built. I will describe some of these ideas, formu-
lating them as principles, and discuss their consequences. In particular I
want to examine the decisions we made in designing the two versions of type
theory we have used at Cornell, V3 [13] and PRL [2]. Since these theories are
both closely related to Per Martin-Lof's well-known type theories, I will
phrase my discussion in terms of them, using M-L75 for [29] and M-L82 for
[30], and M-L when it doesn't matter which. For details of these systems,
refer to the cited literature. (We use ML to denote the widely used program-
ming language part of Edinburgh LCF [24].) First let me put the Cornell work

in context.

Our work on programming logics goes back to 1970, when we suggested [8]
using formal constructive mathematics as a programming language and investi-
gated some of the theoretical issues. This program was explained more
thoroughly in a series of lectures entitled "Constructive Mathematics as a
Programming Language™ given at Saarbrucken, Advanced Course on Programming in
1974. Here the connections to so called "program verification™ were also
exﬁlored. In 1975 we began the design of a working system which we then
called a programming logic. This was reported in the book A Programming Logic
with Mike O'Donnell [15]. We incorporated procedural programs into a con-
structive weak second~order iogic and provided a proof checking system which
employed several efficient decision procedures for subsets of the logic [16].
As we tried to treat data types and some version of comstructive set theory,
we encountered the work of Per Martin-Lof [29] which fit extremely well with
our plans (see Pl, P6) and with the principles we had isolated. We incor-
porated our ideas with his and with various notions from Edinburgh LCF into a
programming logic V3 [13]. At the same time we were joined by Joseph i. Bates

who had several significant ideas for greatly improving the applicability of

these methods in a modern computing enviromment [1]. We proceeded to design a
new and more grand system [3] with the acronym PRL.Vfor Program Refinement
Logic. We designed an Multimate PRL™ system and an initial core system [2].
Since 1980 Bates has led the implementation of the system, and together we

have been experimenting with it and progressing toward the Multimate™ system.
II. Principles

Pl: The first principle of our work has been that the logic of program-
ming should itself be computational and thus self-contained. The principles
of computation are as fundamental as any other and can be axiomatized
directly. We see no theoretical or practical limits unique to computational
explanationé and no need for non-computational ones. So Occam's razor can
prune away those systems of reasoning based on Platonic conceptions of truth

or on classical set theory and its models of computability.

There are numerous systems of reasoning with purely computational meaning
such as Skolem's quantifier free logic [37], Intuitionistic logic, Bishop's
constructive analysis [5], Russian constructive logic, etc. Among these,
Bishop's style of constiuctive reasoning seems to capture the core of all of
the sufficiently rich computational logics. It indeed describes the computa-
tional core of classical mathematics. Based on Bishop's writings [5,6] we
could and did imagine doing mathematics inside a programming logic. When we
began, it seemed that a language like Algol 68 possessed the right concepts
and that its "theory of data types™ might be adequate to describe the
mathematical types.T In retrospect such a view is not so terribly wrong, but
we began our detailed work with a much simpler theory which focused first on
elementary data types and procedural programs. As we said in [15], "...the

programming logic does not fit the classical pattern of partial or total

1In 1975 we considered using a subset of Algol 68 as the basis for our pro-
gramming logic, but there wasn't sufficient local expertise to cope with the
complexity of defining and implementing the subset. There was such expertise

for PL/I. But we did use Algol 68 like notation in [15].

correctness because commands themselves are treated like statements; the
predicate calculus is based on a block structured constructive natural deduc-

tion system..."

P2: All objects come with a type. One decision that comes early in the
design of a logic or language is whether types are specified with objects or
as properties of a universal collection of objects. If ome focuses on the
nature of computer memory or on the development of recursive function theory,
it is tempting to think of a single universe of "constructive objects™ from
which types arise by classifying these objects. This is the approach of Lisp.
One sees it in the logics of Fefermann [22] and recently in the programming
language Russell [20]. This principle is also at work in set theory where omne
starts with a coliection of individuals and builds a cumulative hierarchy of

sets over them.

We argue that the clearest conception is that by saying how to build
objects one is in fact specifying a type. So objects come with their types.
This is similar to Bertrand Russell's conception [33] (belying the name of the
programming language [20])and to the Algol 68 conception and to the M-L comn-

ception.

P3: Products and unions are basic. The nature of pairing is fundamen-
tal (although we know that in set theory it is reducible) as is a notion of
uniting. Our treatment of unions is dictated by a deeper principle, that is

propositions as types (P6).

P&: Functions are effectively computable and total. The notion that
functions are effectively computable follows from Pl; that they are total we
take as a basic principle. The recursive function theory notion of a partial
function can be derived from this concept in several ways. The notion of an
algorithm or rule we take as "categorical™ like that of type. It is a concept
which is manifest in specific types. So there are rules for computing func-

tions from A to B, but the same underlying rule may also compute from A' to B.

We classify a function to be in type A + B if the inputs are from A and

the outputs are in B regardless of what types are used along the way in

determining this value.

PS5: The structure of functions is discerpible. According to Frege
functions arise by abstraction from certain linguistic forms. This principle
is followed in M-L82 where the canonical form of a function is (Ax)b. All
functions are determined by forms or expressions of the range type. This view
is unlike that of Curry [17,18] who thinks of functions as built from primi-

tive functions by applicationm.

From Frege's and Martin-Lof's standpoint, the structure of functions is
primarily a linguistic matter. Computation is also primarily a linguistic
matter. One is thus led to the notion that equality of functions is exten-

sional since other aspects are not internal to mathematics.

Technically it is not easy to adopt another view of functions. For exam-
ple, in order to analyze the structure of f in A -+ B one would be forced to
consider component functions g which might have arbitrary type (lying arbi-
trarily high in the hierarchy of universes as well). Nevertheless we have
felt that there are sufficient benefits to explore the poésibility of building

a usable theory in which functions have discernible structure.

The principal reason that our type theories have provided a means to
analyze the structure of functions is that we have encountered informal argu-
ments about program structure which are powerful and necessary to a program-
ming logic [12]. Other ways of capturing such arguments (see for example
[10]) seem véry cumbersome. We would like to deal with the issue at a funda-

mental level in hopes of finding a powerful solution.

It is not obvious how to analyze the structure of functions as mathemati-
cal objects when they are presented as A-terms because these terms involve the
inherently linguistic notion of a variable in an essential way. The A-terms
suggest an analysis of descriptions but not of functions. However, the combi-
pator form of a function involves only the concept of function and application
and does suggest a means of analysis. To follow this line of thought requires
that we define a certain gcombipnatorial basis for the function spaces A*B and
NxeA.B. This is a collection of basic functions, called combipnators, from

which all other functions can be built by application; such is the style of
the theory of combinators [18,36]. Here is an informal account of how this
can be done in the context of M-L82, Details of a related theory can be found

in [12,131.

For any universe U, and AeU., BellxeA.U., CeI[xeA.(]IyeB(x).Ui) there is a

function

S; €MAeU, .IIBe(MxeA.U;) JICe(MMxeA.(LyeB(x).U,))
Jfe(MxeA.(IyeB(x).C(x)(y))).ONge(xeA.B(x)) .IIxeA.C(x)(g(x))
" so that ' . . ' N
S; ABC € ODfe(MIxeA.(OyeB(x).C(x)(y))).
Dge(MxeA.B(x)).(IxeA.C(x)(g(x))).

The computation rule defining S, ABC f g is SiVABC f g = Ax.f(x)(g(x)). For
convenience we write Si ABC as SABC’ making it clearer that SABC is a typed
version of the S combinator. We can do the same for the K combinator so that

K, AB € IIxeA.(IIyeB(x).A), and-Ki AB a = Ax.a.

Given these combinators as well as those of level Ui derived from the
other constants of the theory such as pairing, (a,b), selection, E, induction,
R, etc.; we can define for any f € IIxeA.B in any Ui whose definition, f, does
not involve notions beyond ?j' a combinator form, say Combj(f). equal to f.
We need a form, level(f), which discovers the maximum level, j, used in build-

:}.ng f.

These combinator forms can be analyzed inside the theory. For example,

given (SABC f)g we can build in operations gp and arg to decompose it, €.g.

op (SABC flg = (8,5, f) and
arg(sABc flg = g.

We also must build in operations gptype and argtype which compute the type of

(Sypc ABC

tions which work for each level n.

f) and g from that of (S f)g. There must be versions of these func-

Actually using S and K combinators or anything very similar is totally
infeasible because they encode the structure of functions in a form too primi-
tive to use. The size of a combinator for a A-term, say Ax.b, built from S
and K and the constants might be quadratic in the size of Ax.b (depending on
the Abstraction algorithm). But there are combinators which allow a much more
intelligible description. One such I call the L-combipnator. Using it there
is a translation of A-terms of length n to combinators in which the combinator
is no more than log(n) times as large. The form of the combinator is L, where
A is a list of addresses of Mlocations™ in the operand which are to be identi-
fied by L,. For example, given p € N > N + N x N such that p(x,y) = (x,y),

A
the function Ax.p(x,s(x)) has the form L .p(I())(s()) where the argu-

A {1.1,1.2}
ment "holes"™ have addresses 1.1 and 1.2 respectively. Such combinator forms
are very similar to A-terms (Ax becomes L, for A a list of occurrences of X)s

but L, can be more easily treated as an operator.

In building a theory in which the structure of functions can be analyzed,
it is important to provide a simple treatment of extemnsional equality as well,
because it is a far more commonly needed equality than the intensional equal-
ity required to support the structural analysis. One way to insure a suffi-
ciently simple treatment of extensional equality is to provide it as atomic,
along side of the intensional equality. This requires distinguishing the
function space with one equality from that with the other. For example A = B
and Vxe€A.B can be used for the intensional space and A + B and IIxeA.B for the

extensional.

P6: Propositions are Ltypes. Since 1975 with PL/CV we were treating
proofs as objects, and we were awaré of the Edinburgh LCF scheme for manipu-
lating proofs as objects. Therefore when we read in Stenlund [36] and
Martin-Lof [29] of the propositions-as-types principle, we were prepared to
accept it coﬁpletely. Indeed, we now see this as a basic principle of seman-
tics; not as a semantic theorem to be used to interpret the logical operators,
but as a principle to organize the entire theory. Revealing the role of this
principle was one of the major accomplishments of M-L, and we have followed

Martin-Lof's example. Although this notion appears also in deBruijn's

AUTOMATH [19] and in Scott's "Constructive Validity" paper [35] and can be
traced back to Curry and Feys [17] and Howard [26], we were not struck by its
fundamental nature and its proper place in organizing concepts until reading

[29].

P7: Iype structure is discernible. For reasons similar to those that
justify the view that the structure of functions is discernible, we claim that
the structure of types is discernible as well. This is especially important
in light of the propositions-as-types principle since we want to express
inside our theories various algorithms for deciding simple classes of proposi-

tions. These algorithms work on the structure of propositions (see [12]).

Since type equality in M-L82 respects structure, our ideas here are close
to Ma?tin—LSf's. However in V3 for example, we are able to determine for any
type whether and how it is built from the basic constructors, and we are able
to argue by induction over the "structured part™ of the type universes. These
capabilities can be consistently added to M-L82 by rules of the following sort
(as above these Mrules™ only suggest a set of concepts using the M-L82 format,

they are not definitively integrated into M-L82 to extend it).

First there is a form to decide the outer structure of a type in any

universe, although only the form for the first universe is shown here.

(zeU,) (k=1,...,9) (jeN)

xeU, C type ekeC(x/z) eleC(x(z)

typecase (x, s oo e9) € C(x/z)

There is a rule insuring functionality of typecase in all of its arguments,

€.8.

(k lg eecey 9)
x = x' in U0 e ei € C(x/z)

typecase (x, €15 eees eq) = typecase (x', e] » cees) € C(x/z)

10

There are eight rules for reducing typecase such as

typecase (N;» ejs.eeseg) = e;(i/j)

typecase (N, ejscecseg) = e,
typecase (AxB, el.....eg) = ey
typecase (A+B, e ,....eg) = e,
typecase (A+B, eeg) = e5

typecase (2xeA.B, e69)
typecase (IIxeA.B, €seeese) = e7
typecase (WxeA.B, e 1.....e %

Using these rules we can define functions U0 -+ N2 which decide whether a type
has a certain structure. For example isprod = Ax.typecase(x, 02. 02. 12. 02.
cse's 02) has value l2 iff x is a product type, AxB. Notice that typecase(x,
02.
tured types.

cees 02. 12) will equal 12 iff x is not one of the atomic types or struc-

There are also functions to decompose the structured types. These pro-

vide what we call strong intensiopnality.

X € Ui x = x!' € Ui
left(x) € U. left(x) = left(x') € U,
right(x) € ﬁi right(x) = right(x') € U,

We then need axioms to define left, right such as

Ae U, BeU, x €U, typecase(x, 02. 02, los oo as 02) =1, €N
left (AXB) = A x = left(x) x right(x)
right (AxB) =

for each of the binary operators, x, +, .

We also need forms for analyzing the structure of types built from fami-

lies of types.
X € UO t‘.ypecase(x. 02. e o o 8 02. 129 02. 02) = 12 € NZ

index(x) € Uy
fam(x) € IIyeindex(x).U0

= Ozeindex(x).fam(x)(z)

11

We also have rules such as

(x € A)

A e Ui B € Ui

index(3xeA.B) = A
fam(3xeA.B) = Ax.B

P8: Equality information is not needed in copstructing objects. We
knew from [15] that we did not need the information from equality assertioﬁs
to execute'proofs. and we learned from Bates [l] that one did not need this
information to extract executable code from proofs. This led us to accept
readily the M-L treatment of equality. But we did not recognize this as a
basic principle until after studying M-L. We still considered the possibility
in V3 [13] of storing with equality asserfions the algorithms for deciding

them.

Accepting this principle bears heavily on one of the features of our type

theories, the use of quotient types, discussed in the next section.
ITI. Features of Cornell Type Theories

Fl: Quotient types are very useful. A type is determined not omnly by a
methoa of construction but by a criterion of equality on the objects con-
structed (this notion too can be found in Frege and is prominent in Bishop's
writings). The type can be changed by changing either the method or the
notion of equality. However, it appears not to be essential to build in a
capability to express this latter change. It can be reflected by pairing a
types say A, with a notion of equivalence omn A, say E. However economical
such a scheme is, it is not natural and it cuts off such types from the other

type forming operations. A common example illustrates these issues.

Consider Bishop's definition of a real number as a Cauchy convergent

sequence of rationals [5], letting Q denote the rationals,

(1) R = 3x:NQ.I(n,m):Z .(|x(n) - x(m)| € 1/m + 1/n).

12

He defines two real numbers to be equal, E(x,y), iff

(2) Onez'.(lx(n) - y(n)| < 2/n).

We take the real numbers, R, to be the quotient type of (1) with (2) written

R = R/E. Then the equality relation on the type R, =p® is E,.

When we want to define the functions from R to R we simply take R »+ R
and by the nature of equality on any type, it is known that these functions

respect E.

The concept of a real can be defined without quotients. We take R as the
reais. Then we can define the functions from R to R, say F(R,R) following
Bishop's notation, as {feR*R | V(x,y)€eR.(E(x,y) = E(£f(x),f(y)))}. But now we
not only need to build anothef apparatus for function spaceé. but we must
carry around certain information which is not necessary in computing reals.
In those cases where the information is needed the quotient comstruct cannot

be used.

Here is a suggestive account of quotient types in the setting of M-L

(also see [13]).

(xeA, yeA) (xeA, yeA)
(1) A type R type (2) AU ReU
A/R type A/ReUn

Call A/R the Quotient of A by R

(3) (XGA. yﬁA)

A =4y R =Ry

Al/Rl = A2/R2

(4) (xeA, yeA)
a€A R type

aeA/R

(5) ajeA a,eA eeR(a,/x, ay/y)

re(al “A/R a2)

