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Abstract

Records and dependent records are a powerful tool for programming, representing mathematical concepts, and program
verification. In the last decade several type systems with records as primitive types were proposed. The question is arisen:
whether it is possible to define record type in existent type theories using standard types without introducing new primitives.

It was known thatndependentecords can be defined in type theories with dependent functions or intersection. On the
other handdependentecords cannot be formed using standard types. Hickey introduced a complex notery dépendent
functionsto represent dependent records. In the current paper we introduce a simpler type constapsadent intersection
i.e., the intersection dfvo types, where the second type may depend on elements of the first one (do not confuse it with the
intersection of a family of types). This new type constructor allows us to define dependent records in a very simple way and
also inherently interesting on its own.

1 Introduction

In general, records are tuples of labeled fields, where each field may have its own type. In dependent records (or more
formally dependently typed records) type of components may depend on values of the other components. We will consider
type theories where types are first-class objects. In such theories values of record components may be types. This makes
the notion of dependent records very powerful. Dependent records may be used to represent algebraic structures (such as
groups) and modules in programming languages like SML or Haskell (see for exatyib0}) [ Moreover if type theory has
propositions-as-types principl,[18], then we can add specifications (i.e. properties of the intended behavior) of a module
as additional components to this modul&l][suggests to use dependent records for mathematical theories where fields of
records are theorems. Records are also the first step toward object-oriented/ghlculi [

Example 1 One can define the signature for ordered set as a dependent record type:
OrdSetSig ={t : Typeless:t —t — B}

This definition can be understood as a signature of an algebraic structure as well as an interface of a module in a programing
language.

Example 2 The proposition-as-type principle allows us to add the property of ordered sets as a new component:
OrdSet = {t: Typeless:t — t — B;axm: EqRel(t,less)}

whereEqRel(t, less) is a predicate stating thatess is an equivalence relation on
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Here axm is a new field that defines axiom of the algebraic structure of ordered sets (or specification of the module
OrdSet).

Example 3 In type theories with equality, manifested fieldsg]) may be also represented as specification.
IntOrdSetSig = {t : Typeless:t —t — B;mnf : t = Z}
is a signature where typeis bound to be type of integers.

From mathematical point of view the record type is similar to the product type. The essential difference is the subtyping
property: we can extend a record type with new fields and get a subtype of the original record type&)r&ES:t and
IntOrdSetSig defined above are subtypes@©@fdSetSig. Subtyping property is important in mathematics: we can apply
all theorems about monoid to smaller types such as groups. Itis also essential in programing for inheritance and abstractions.

Different type theories with records were proposed both for proof systems as well as for programming landGg&€:s ([

8,4, ?,121] and others). These systems treat record type as a new primitive. In the current paper we are interesting in the
following natural questionwhether it is possible to express the notion of records in usual type theories without record type

as primitives?This question is especially interesting for pure mathematical proof systems. As we saw records are a handy
tool to represent algebraic structures. On the other hand records do not seem to be the basic mathematical concept that should
be included in the foundation of mathematics. Records should be rather defined in terms of more abstract mathematical
concepts.

It turned out that it is possible to definedependent records a sufficient powerful type theory that has dependent
functions [L1, 6] or intersection P]. On the other hand, there is no known way to form dependent records in standard type
theories (cf. P]). However, Hickey!l1] showed thatlependent recordsan be formed in an extension of Martirbitype
theory. Namely, he introduced a new typevefy depended functionghis type is powerful enough to express dependent
records in a type theory and provides a solid mathematical foundation of dependent records. Unfortunately the type of very
depended functions is very complex itself. The rules and the semantics probably is more complicated for this type than for
dependent records. The question is whether there is a simpler way to add dependent records to a type theory?

In this paper we extend a type theory with a simple and easier to understand primitive type constepeiodent inter-
section This is a natural generalization of the standard intersection introducéfl am¢l 22]. Dependent intersection is
an intersection ofwo types, where the second type may depend on elements of the first one. This type constructor is built
by analogy to dependent products: elements of dependent product are pairs where the type of the second component may
depend on the first component. We will show that dependent intersection allows us to define the record type in a very simple
way. Our definition of records is extensionally equal to Hickey’s ones, but is far simpler. Moreover our constructors (unlike
Hickey’s) allow us to extend record types. For example, having a definition of monoids we can define groups by extending
this definition rather than repeating the axioms of monoid. We also show some other interesting uses of this new type.

The structure of the paper is as follows. In Sec@ame recall the concept of the ordinary intersection, then we introduce
a new typedependent intersectiogive the semantics for this type and the corresponding inference rules. Then, in Section
we informally describe records and their intended properties. We show Hickey’s definition of records and show how record
types are connected to intersections. In Sediove present the formal definition of records as dependent intersection. In
AppendixBl we give an example of an abstract data tyfeutk) represented in our type theory as a record. In Se@&ion
we show another application of dependent intersection: the set type cons{ructdr| P(x)} can be defined as dependent
intersection as well.

The theory of dependent intersection and dependent records is implemented in the MetaPRLI1%/4dtelnSee theories
itt _disect anditt _record* inLogical Theoriesin13]. The MetaPRL system is based on the NuPRL type théegry [
which is a generalization of Martinéf’s type theory|L§].

The NuPRL type theory has proposition-as-types principle and powerful enough to represent any mathematical statement.
NuPRL has equality, subtyping relation and intersection type. Membership and subtyping are extensional. For example,
A C B does not say anything about structure of these types, but only means:ithatif thenx € B. As a result the type
checking and subtyping are undecidable.

2 Dependent Intersection
2.1 Ordinary Intersection

It is well known that the binary intersection can be added to a type theory. See for exasjple [



The intersection of two typed and B is a new type containing elements that are botd mnd B. For exampleAx.x + 1
is an element of the typ&Z — Z) (N — N). Two elements are considered to be equal as elements of thelfypB if
they are equal in both types and B.

Example4 Let A = N — Nand B = Z- — Z (whereZ~ is a type of negative integers). Theé# = Ax.x and
abs = A\x.|z| are both elements of the type( B. Althoughid andabs are equal as elements of the tyNe— N (because
these two functions do not differ &), id andabs are different as elements Bf~ — Z. Thereforejd # abs € A B.

2.2 New Intersection

We extend this definition to a case when typean depend on elements of tyde Let A be a type and3[z] be a type
for all z of the typeA. We define a new typelependent intersection: A (") B|x]. This type contains all elemenisfrom A
such that is also inBa).

Remark 5 Do not confus¢he dependent intersectiovith the intersection of a family of typ€S),. , B[z]. The later refers
to an intersection of typeB|[z] for all 2 in A. The difference between these two type constructors is similar to the difference
between dependent produats A x B[z] = X,.4B[z] and the product of a family of typ&5,. 4 B[z] = z : A — Blz].

Example 6 The ordinary binary intersection is just a special case of a dependent intersection with a constant second argu-
ment
A ﬂ B=z:A m B.

Example 7 LetA = Z andB[z] = {y : Z |y > 2z} (i.e. B[z] is a type off all integerg, s.t.y > 2z). Thenx : A Blz] is
a set of all integers, such that> 2.

Two elements: anda’ are equal in the dependent intersectionA () B[x] when they are equal both ih and B[a].

Example 8 Let A = {0} — N andB[f] = {1} — Ny, whereN,, is a type of the firsk natural numbers and0} and
{1} are types that contain only one elemebafd 1 correspondingly). Them : A" Blz] is a type of functiong that map
0 to a natural number, and mapl to a natural numben, € {0,1,...,no — 1}. Two such functiong and f’ are equal in
this type, when firstf = f' € {0} — N, i.e. f(0) = f’(0), and secondf = f’' € {1} — Ny, i.e. f(1) = f'(1) < f(0).

2.3 Semantics

We are going to give the formal semantics for dependent intersection types based on the predicative PER semantics
of [2,3].
We are supposed that our type theory has the judgments of the following forms:
AType A'is a well-formed type
A=B A andB are (intentionally) equal types
a€A a has typeAd
a=be A aandbare equal as elements of tyde
In the PER semantics types are interpreted as partial equivalence relations (PERS) over terms. Partial equivalence relations
are relations that transitive and symmetric, but not necessary reflexive.
According to B], to give the semantics for a typé we need to determine when this type is well-formed and specify the
partial equivalence relation for this type € b € A). Then we define € A to be true whem = a € A. We should also
give an equivalence relation on types, i.e. determine when two types are equal.
The partial equivalence relatian= b € A may be defined in two steps. First, we say when a term is an element of the
given type (i.e. specify whem € A is true). Second, we define aquivalenceelation on elements of this type.

The Extension of the Semantics We introduce a new term constructor for dependent interseatiod () B[z]. This
constructor bounds the variabtdn B. We extend the semantics @][as follows.

e The expression : A B[z] is a well-formed type if and only i is a type andB|z] is a functional type over : A.
That is, for anyz from A the expressio®3[z] should be a type and if = 2’ € A thenB|z] = B[z/].
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Table 1. Inference rules for dependent intersection

e The elements of the well-formed type: A B[z] are such terms thata is an element of both type$ and B[a).

e Two elements: anda’ are equal in the well-formed type : A B[z] iff a = ¢’ € Aanda = o’ € B[a]. (Note
that, sincen = o’ € A implies Bla] = B[d'], this definition is symmetric, i.e. it does not matter whether we write
a=a' € Bla]ora=d' € Bld]).

e Two typesz : A() Blz] andx : A’ B’[z] are equal whemd and A’ are equal types and for all andy from A if
x =y € AthenBl[z] = B'[y].

Theorem 9 The semantics given above is an consistent extension of the standard semantics.

This theorem can be proved using the standard techniqi8}.of [
2.4 The Inference Rules

The corresponding inference rules are presented in Table

Note that rulegTypeFormationjand (Introduction)are redundant when we defideType = (A= A)anda € A =
(a=a€A).

Theorem 10 All rules of Tablel are valid in the semantics given above.
This theorem is proved by straightforward application of the semantics definition.

Theorem 11 The following rules can be derived from the primitive rules of Tdlilea type theory with the appropriate cut

rule.
F'Fa=d € (z: AN Blz])

'cFa=a€A
I'Fa=ad € (x: A Blz])
I'a=d € Bld]

(CaseEqualityl)

(CaseEquality?2)

This rules was derived in the MetaPRL system (a system based on the NuPRL type theory) and the proof was machine-
checked.



Theorem 12 Dependent intersection is associative, i.e.

x: Aﬂ(y : B[x}ﬂC[m,y]) = z:(z: AﬂB[m])ﬂC[z,z}

where=, stands for extensional equality, thatis =, 7> whenT; C T, and7y C T4, i.e. these two types have the same
elements and the same equality relations.

The formal proof was also checked by the MetaPRL system. We show here only an informal proof. An aeldrasnt
typea : A((b: Bla] () Cla,b]) iff it has typesA andb : B[z] () Clz,b]. The later is a case iff € B[z] andz € Clx, z].
On the other handy has typeab : (a : A Bla]) () C[ab, ab] iff x € (a : A Bla]) andz € C[z,z]. The former means
thatz € A andz € B[z]. Thereforex € a : A(\(b : Bla](\Cla,b)]) iff x € Aandz € B[z] andz € C[z,x] iff
xz €ab: (a: AN Bla]) (N Clab, ab].

3 Records

We are going to define record type using dependent intersection. In this section we informally describe what properties
we are expecting from records. The formal definitions are presented in Séction

3.1 Plain Records

Records are collection of labeled fields. We use the following notations for records:
{xlzal,...,xn:an} (1)

wherexy, ..., x, arelabelsanda,, ... a,, are corresponding fields. Usually labels have a string type, but generally speaking
labels can be of any fixed typeubel with a decidable equality. We will usbe truetype font for labels.

The extraction operatorx is used to access record fieldsrlis a record them.x is a field of this record labelegl That
is we expect the following reduction rule:

{Xl = A1y...yXp = an}.xi — Qj.
Fields may have different types. If eachhas typeA; then the whole recordj has the type
{x1:41,...,%, : Ap}. 2)

Also we want the natural typing rule for the field extraction: for any reeaséithe type 2) we should be able to conclude
thatr.x; € A;.

The main difference between record types and proddets - - - x A, is that record type has treubtyping property
Given two records?; andRy, if any label declared i, as a field of typed is also declared iR, as a field of type3, such
that B C A, thenRs is subtype ofR;. In particular,

{x1: 41, . %t Ap} C{x1: A1, % s A} (3)
wherem < n.

Example 13 Let Point = {x : Z;y : Z} andColorPoint = {x : Z; y : Z; color : Color}. Then the recordx = 0;y =

0; color = red} is not only aColor Point, but it is also aPoint, so we can use this record whenevesint is expected.
For example, we can use it as an argument of the function of theRypet — T'. Further the result of this function does
not depend whether we u$e = 0;y = 0; color = red} or {x = 0;y = 0;color = green}. Thatis, these two records
are equal as elements of the typeint, i.e.

{x =0;y =0;color =red} =
{x=0;y =0;color =green} € {x: Z;y: Z}

This is a natural corollary from the subtyping property.



Using subtyping one can module the abstract fields. Consider a ret¢bad has one “private” fiele of the typeA and
one “public” fieldy of the typeB. This record has typ¢x : A;y : B} Using subtyping property we can conclude that it
also has typgy : B}. Now we can consider typgy : B} as a public interface for this record. Anyone who knows that
r € {y : B} have access to fielg, but access to field would be type invalid. That is, a function of the typg : B} — T
can manipulate only with fielgl on its argument, but we can pass a record with field it.

Further, records do not depend on field ordering. For exam{gles 0;y = 1} should be equal tdy = 1;x = 0},
moreover{x : A;y : B} and{y : B;x : A} should define the same type.

3.1.1 Records as Dependent Functions

Records may be considered as mappings from labels to the corresponding fields. Therefore it is natural to define a record
type as a function type with the domalmbel (cf. [6]). Since the types of each field may vary, one should use dependent
function type (i.e.II type). LetField[l] be a type of a field labeleld For example, for the record typ2)(take

Field[l] 2
if |{=x; then A; else

if l=x, then A,
else Top
Then define the record type as the dependent functionttype:
{x1:A1:.. ;%0 Ay} 2 11 Label — Field[l]. @)

Now records may be defined as functions:

{x1=a1;...;%, = an} 2
ALif [ =x; then a; else
1 1 (5)
if [=x, then a,
And extraction is defined as application:
A
rl =rl (6)

One can see that these definitions meet the expecting properties mentioned above including subtyping property.

3.1.2 Records as Intersections

Using above definitions we can prove that in case wheg; allare distinct labels

{Xl SAG Xy An} e {Xl : Al}m : n{xn : An} (7)

This property provides us a simpler way to define records. First, let us define the type of records with only one field. We
define it as a function type like we did it in the last section, but for single-field records we do not need depend functions, so
we may simplify the definition:

{x:4} 2 {x} - A 8)

where{x} is the singleton subset dfabel.
Now we may take{) as a definition of an arbitrary record type ()i

Example 14 The record{x = 1;y = 2} by definition ) is a function that maps to 1 andy to 2. Therefore it has type
{x} = Z={x:Z}and also has typ¢y} — Z = {y : Z}. Henceithas typéx : Z;y : Z} = {x: Z} ({y : Z}.

1 We use the standard NuPRL notatians A — B[z] = [] Blx] for the type of functions that maps eache A to an element of the typB|x].
z: A



One can see that when all labels are distinct definitidharfd [7)+(8) are equivalent. That is, for any record expression
{z1: Ay;.. 52y 0 Ay} Wherez; # x5, these two definitions define two extensionally equal types.

However, definitions{)+(8) differ from the traditional ones, in the case when labels may coincide. Most record calculi
prohibit repeating labels in the declaration of record types, e.g., they do not recognize the exgeession : B} as a valid
type. On the other hand, ii1] in the case when label coincide the last field overlap the previous oneg:e:g4,; x : B} is
equal to{x : B}. In both these cases many typing rules of the record calculus need some additional conditions that prohibits
coincident labels. For example, the subtyping relatB)m(uld be true only when all labels are distinct.

We will follow the definition [7) and allow repeated labels and assume that

{XZA;XZB}:{XZAHB}. 9)

This may look unusual, but this notation significantly simplifies the rules of the record calculus, because we do not need to
worry about coincident labels. Moreover, this allow us to have multiply inheriting (see S&c8dor an example). Note
that the equatior@) holds also in Bickford’s definition of record8][

3.2 Dependent Records

We want be able to represent abstract data types and algebraic structures as records. For example, a semigroup may be
considered as a record with the fieldsr (representing a carrier) andoduct (representing a binary operation). The type
of car is the universdJ; (the type of types). The type ptoduct should becar x car — car. The problem is that the type
of product depends on the value of the figddr. Therefore we cannot use plain record types to represent such structures.

We need dependent records/11, 21]. In general a dependent record type has the following form

DepRec = {x: A;y: Blx|;z: Clx,y];...}

That is, the type of a field in such records can depend on the values of the previous fields.
The following two properties show the intended meaning of this type.

1. Therecordx = a;y = b;z = ¢; ... } has typeDepRec when

a€ A, beBlal, céeC[a,bl],

2. For any record € DepRec

rx€ A, ryéeB[rx], rzel[rx,ry],

Example 15 Let SemigroupSig be the record type that represents the signature of semigroups:
SemigroupSig = {car : U;; product : car x car — car}.

Semigroups are elements®dmigroupSig satisfying the associative axiom. This axiom may be represented as an additional
field.

Semigroup = { car : U;
product : car X car — car;
axm:Vz,y,z:car. (z-y)-z=x-(y-2)}

wherez - y stands forproduct (z, y).

3.2.1 Dependent Records as Very Dependent Functions

We cannot define dependent record type using “ordinary” dependent function type, because the type of the fields depends not
only on labels, but also on values of other fields.
To represent dependent records Hickeyj introduced thevery dependent functidgpe constructor:

{flz:A— B[f 2]} (10)



Here A is the domain of the function type and the ranggf, «] can depends on the argumeanand the functiony itself.
That is type[L0) refers to the type of all functiongwith the domainA and the rangé|g, a] on any argument € A.
For instanceSemigroupSig can be represented as a very dependent function type

SemigroupSig a {r|l: Label — Field|r,1]} (11)
whereField[r,1] 2

if [=car then U; else
if | =product then r.car x r.car — r.car
else Top

Not every very dependent function type has a meaning. For example the range of the function on asgraneat depend
on f(a) itself. For instance, the expression

{flz:A— flx)}

is not a well-formed type.

The typellL0) is well-formed if there is some well-founded orderon the domaim4, and the range typB|[z, f]onz = a
depends only on value&b), whereb < a. The requirement of well-founded order makes the definition of very-dependent
functions to be very complex. Se#l] for more details.

3.2.2 Dependent Records as Dependent Intersection

By using dependent intersection we can avoid the complex concept of very dependent functions. For example, we may define

SemigroupSig 2 self : {car : U;} N
{product : self.car X self.car — self.car}

Here self is a bound variable that is used to refer to the record itself considered as a record of tfieaypeU,}. This
definition can be read as following:

r has typeSemigroupSig, when first,r is a record with a fieldar of the typeU,, and second; is a record
with a fieldproduct of the typer.car x r.car — r.car.

This definition of theSemigroupSig type is equal to11), but it has two advantages. First, it is much simpler. Second,
dependent intersection allows us to extendShevigroupSig type to theSemigroup type by adding an extra fiekskm:

Semigroup = self - SemigroupSig ()
{axm : Vz,y,z : self .car (v -y)-z=x-(y-2)}

wherez - y stands forself .product(z, y).

We can define dependent record type of an arbitrary length in this fashion as a dependent intersection of single-field
records associated to the left.

Note thatSemigroup can be also defined as an intersection associated to the $ightigroup =

re: {car:U;}N
(rp: {product : r..car X ro.car — r..car}()
{axm:Vz,y,z :recar (z-y) 2=z (y-2)})

wherez - y stands for,.product(z,y). Herer, andr, are bound variables. Both of them refer to the record itselfyput
has type{car : U;} andr, has type{product : ... }. These two definitions are equal, because of associativity of dependent
intersection (Theorerh?2).

Note that Robert Pollack?ll] considered two types of depended records: left associating records and right associating
records. However, in our framework left and right association are just two different ways of building the same type. We will
allow using both of them. Which one to chose is the matter of taste.



4 Record Calculus
4.1 The Formal Definitions
Now we are going to give the formal definitions of records using dependent intersection.

4.1.1 Records

Elements of record types are defined as previous. They map labels to the corresponding fields. We could pick any function
as a definition of an empty record:

{2 Al

The definitions of field update/extension and field selection are the sameld}.in [

a) = (ALif l=x then a else rl)

These are basic operations. We can construct any record by these operations. That is, we will considéxreeord
ai;...;Xn = an} as asyntax sugar for expression:

{}x1:=a1.x0:=as..... Xy = G,

These definitions provides that

{x1=a1;...;xp =a,} = ALif =% then a; else

if |=x, then a,

4.1.2 Record Types

Single-field record type is defined as
{x: A} 2 {x}— A4

where{x} 2 {l: Label | | = x € Label} is a singleton sét
Independent concatenation of record types is defined as

{R15R2} é Ry ﬂRz

Dependent concatenation of record type (left associative) is defined as

{self : Ry; Ra[self]} 2 self : Ry ﬂRg[self]

Syntactical Remarks Hereself is a variable bounded iR,. We will usually use the name “self” for this variable and use

the shortening Ry; Ra[self]} for this type. Further, we will omit $elf.” in the body of R,, e.g. we will write justx for

self .x, when such notation does not lead to misunderstanding.

We assume that this concatenation is a left associative operation and we will omit inner braces. For example, we will write
{x: A;y : Blself];z : C[self]} instead of{{{x : A};{y : B[self]}};{z : Clself]}}. Note that in this expression there are

two distinct bound variableelf. First one is bound i and refers to the record itself as a record of the tigpe A}. Second

self is bound inC, it also refers to the same record, but it has type A;y : B[self]}.

2{z : A| P[z]} is a standard type constructor in the NUuPRL type the@fy3Jee also Sectics.



Note that the definition of independent concatenation is just a partial case of dependent concatenatidity, edesnnot
depend orself.
The definition of right associating records is

{z:x: A; R[z]} = self : {x: A} ﬂR[self.x}

Syntactical Remarks Herex is a variable bounded iR that represents a field Note that we cam-convert the variable
x, but not a labek, e.g.,{z : x : A;R[z]} ={y: x: A;R[y]}, but{z : x: A; R[z]} # {y :y: A; R[y]}. We will usually
use the same name for labels and corresponding bound variables.

This connection is right associative, e.§s : x: A;y : y: Blz];z: Clx,y]} stands for{z : x : A;{y : y : Blz];{z :

Clz,yl}}}-
4.2 The Rules

The rules of our record calculus are represented in Appefdi&ll these rules are derivable from the definitions given
above. They were derived in the MetaPRL system.
Then using these rules we can prove the following subtyping properties:

{R1; Ry} C Ry
{R1; R2} C Ry
{Rl;Rg[Self}} Q Rl
{z:x: A R[z]} C {x: A4}

FR CR] self : Ry F Ra[self] C Rh[self]
= {Ry; Ro[self]} C {Ry; Ry[self]}
FACA x: At R[z] C R'[z]

Fl{z:x: A R[z]} C{x:x: A" R[z]}

Further, we can establish two facts that states the equality of left and right associating records.

{z :x: A; Rlz]} = {x: A; R[self x|}

{Ry;{x : x : Alself]; Ra[self ,x]}} =

{{R1;x : A[self]}; Ra[self, self x|}

For example, using these two equalities we can prove that

{x: A;y: Blself x|;z : C[self .x; self .y|} =

{z:x:Ajy:y: Blz];z: Clz;y]}

Personally | prefer the left associating records, because first, the left associating constructor allows us to extend records.
Second, it is more easily to prove the inclusion of such extension. On the other hand, one can find that right associating
records are more natural, because in these records bound variables refer to fields rather than to records itself. It makes
dependent records to be more similar to dependent products likex (y : B[z] x Clx, y]).

4.3 Examples

Semigroup Example Now we can define th8emigroupSig type in two ways:

{car : U;;product : car x car — car} Or

{car : car : U;; product : car x car — car}

Note that in the first definitiomar in the declaration ofroduct stands forself.car, and in the second definitiatr is just
a bound variable.
We can defin&emigroup be extendingSemigroupSig:

{SemigroupSig;axm : Vz,y,z:car (rx-y)-z=z-(y-2)}
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or as a right associating record:

{car : car : U;;
product : product : car X car — car;

axm:Va,y,z:car (z-y)-z=x-(y-2)}

In the first caser - y stands forself .product(zx, y) and in the second case for jystoduct(z, y).

Multiply Inheriting Example A monoid is a semigroup with a unit. So,
MonoidSig = {SemigroupSig;unit : car}

A monoid is an element aff onoidSig which satisfies the axiom of semigroups and an additional property of the unit. That
is, M onoid inherits fields from both\/onoidSig andSemigroup. We can define thé/onoid type as follows:

Monoid = { MonoidSig; Semigroup;
unit_axm:Vz:car x-unit =z}

Note, that sincé{onoidSig andSemigroup shared fieldgar andproduct, these two fields present in the definition of
M onoid twice. This does not create problems, since we allow repeating labels (S&dtign
Now we have the following subtyping relations:

SemigroupSig DO  MonoidSig
U U
Semigroup D Monoid

5 Sets and Dependent Intersections

By definition, the set typéx : T'| P[]} is a subtype of", which contains only such element®f T" that satisfy property
P[z] (seell]). Set types is used to hide a witnessitjf].

Example 16 The type of natural numbers is definedMas- {n : Z | n > 0}. Without set types we would have to defihas
n : Z x (n > 0). In this case we would not have the subtyping propBrty Z.

Example 17 Instead of defining semigroups as records of $leenigroupSig type with an additional fieldixm, we could
define theSemigroup type as a subset &femigroupSig:

Semigroup = {S : SemigroupSig | Vz,y,z: S.car...... } (12)

In the NUPRL type theory the set type is a primitive type. We will show that the set type may be defined as a dependent
intersection.

First, we assume that our type theory hasthe type, that is a supertype of any other type. We will need only one
property of theT'op type: T'(Top = T for any typeT'. (In NUPRLTop is defined a$),.,,,,, V oid, whereVoid is the
empty type).

Now consider the following type (squash operator):

[P] £ {«:Top| P}

[P] is an empty type whe® is false, and is equal tBop when P is true. The similar type was considered if] as a
primitive type. We can prove that

{z:T|Pla]} =c x: T(\[Pla]] (13)

We could take13) as a definition of sets, but it would create a loop, because we defined squash operator as a set. To break
this loop one can either take squash operator as a primitive type in the way it was d&éBg ifhat makes sense, because
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the squash operator is simpler than the set type constructor. Another way to break the loop is to define squash using other
primitives. For example, one can define the squash type using union:

[P] £ | Top.

(Union is a type that dual to intersectiobd]12]). In the presence of Markov's principld5| there is an alternative way to
define[ P]:
[P] 2 ((A => Void) => Void)

whered => B 2 N B.
z:A

The Mystery of Notations It is very surprising that braces .. } was used for sets and for records independently for a
long time. But now it turns out that sets and records are almost the same thing, namely, dependent intersection! Compare the
definitions for sets and records:

{z:T| Pla]}
{self : Ry;  Ro[self]}

z: T NO[P[z]]

A
2 self : Ry ) Ralself]

The only differences between them are that we use squash in the first definition and"Woiteséts and *” for records.
So, we will use the following definitions for records:

{self : Ry | Raself]} = {self : Ry;[Ra[self]]} = self : Ry N[ Ralself]]

{z:x:A|Rz]} = {z:x: A[R[2]]} =
self - {x: A} N [R]self x]]

This gives us right to use the shortening notations as in Sedtihe'to omit inner braces andsélf”. For example, we
can rewrite the definition of th8emigroup type (12) as

) A
Semigroup = {car : Uy
product : car X car — car |

Va,y,z:car (x-y)-z=z-(y-2)}
Remark Note that we cannot define dependent intersection as a set:
x:AﬂB[Js] = {z:A|z € Blx]}. (wrong!)
First of all, this set is not well-formed in the NuPRL type theory (this set would be a well-formed type, onlyandesx]
is a type for allz € A, but the membership is a well-formed type in the NuPRL type theory, only when it is true). Second,

this set type does not have the expected equivalence relation. Two elements are equal in this set type, when they are equal
justin A, but to be equal in the intersection they must be equal in both typesd B (see Exampld).
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Reduction rules
(rx:=a)x —a
(r.y :==b).x — r.xwhenx # y.

In particular:{x; = a1;...;%, = a,}.x; — a; when allx;’s are distinct.

Type formation

Single-field record: Dependent record:
' AType Ttk x e Label ' Ry Type T; self : Ry F Ro[self] Type
Tk {x: A} Type I F {Ry; Ra[self]} Type
Independent record: Right associating record:
I'- Ry Type TI't Ry Type I't{x:A}Type T;z:AF R[z]Type
['F {Rq; Rao} Type '+ {z:x: A; Rz]} Type

Introduction (membership rules)
Single-field record:

'ae A I' = x € Label F'Fre{x: A} I'tx #y € Label
'brx:=ac{x: A} 'k (ry:=b)=rec{x:A}

Independent record:

I'kre Ry I'treRy
FI—TE{Rl;RQ}

Dependent record:

'kFre Ry I'Fr € Rolr] I' = {Ry; Ra[self]} Type
I'Fr € {Ry; Ro[self]}

Right associating record:

F'kre{x: A} I'kr e R[rx] I'F{z:x: A;R[x]} Type
I'tre{z:x: A;R[x]}

Elimination (inverse typing rules)

Single-field record: Dependent record:
Pkre{x: A} I'Fr € {Ry; Ro[self]}
rxe A 'treR I'Fr e Rylr]
Independent record: Right associating record:
I'kre{R1; R2} 'Fre{z:x: A R[z]}
I'FreRy I'FreR, I'FrxeA I'kr € Rlrx|

Table 2. Inference rules for records

14



A Inference Rules for Record Calculus

The basic rules of our record calculus are shown in Table

We do not show the equality rules here, because in fact, these rules repeat rules R aradigan be derived from them
using substitution rules in the NuPRL type theory. For example, we have the following rules

I'Fa=d €A I'Fx=x' € Label
Ik (rx:=a)=(r'x:=d) e {x: A}

F'kr=reRr F'kr=1r"€Ry
I'Fr=1r"€{Ry; R}

In particular, we can prove that
{x=0;y =0;color =red} =
{x=0;y =0;color =green} € {x: Z;y: Z}

B Final Example: Abstract Data Type

We can represent abstract data types as dependent records. For example, we can define data structure stack as following:

Stack(A) 2

{car : U;;

empty : car;

push : car — A — car;

pop : car — (car x A + Unit) |

Vs:car Va:A pop(pushsa)=1inl(s,a)|
pop(empty) = inr e}

This definition provides us not only the typing information of the functipap andpush , but also specify the intended

behavior of these functions. An implementation of the stack data type would be an element of ti$&dyiped). For
example, we can implement stacks as lists:

stack_as_list(A) =
{ car = AlList;
empty = nil;
push = As. \a.a :: s;
pop = As.match s with
nil => inre

a:xs’ =>inl(sa)}

The following theorem states that our implementation of stacks indeed satisfy the specification.

Theorem 18 For any typeA
stack_as_list(A) € Stack(A).

This theorem was proved in the MetaPRL system.
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