
Dependent Intersection:
A New Way of Defining Records in Type Theory∗

Alexei Kopylov
Department of Computer Science

Cornell University
Ithaca, NY 14853, USA

Abstract

Records and dependent records are a powerful tool for programming, representing mathematical concepts, and program
verification. In the last decade several type systems with records as primitive types were proposed. The question is arisen:
whether it is possible to define record type in existent type theories using standard types without introducing new primitives.

It was known thatindependentrecords can be defined in type theories with dependent functions or intersection. On the
other handdependentrecords cannot be formed using standard types. Hickey introduced a complex notion ofvery dependent
functionsto represent dependent records. In the current paper we introduce a simpler type constructordependent intersection,
i.e., the intersection oftwo types, where the second type may depend on elements of the first one (do not confuse it with the
intersection of a family of types). This new type constructor allows us to define dependent records in a very simple way and
also inherently interesting on its own.

1 Introduction

In general, records are tuples of labeled fields, where each field may have its own type. In dependent records (or more
formally dependently typed records) type of components may depend on values of the other components. We will consider
type theories where types are first-class objects. In such theories values of record components may be types. This makes
the notion of dependent records very powerful. Dependent records may be used to represent algebraic structures (such as
groups) and modules in programming languages like SML or Haskell (see for example [4, 10]). Moreover if type theory has
propositions-as-types principle [9, 18], then we can add specifications (i.e. properties of the intended behavior) of a module
as additional components to this module. [11] suggests to use dependent records for mathematical theories where fields of
records are theorems. Records are also the first step toward object-oriented calculi [1].

Example 1 One can define the signature for ordered set as a dependent record type:

OrdSetSig = {t : Type; less : t→ t→ B}
This definition can be understood as a signature of an algebraic structure as well as an interface of a module in a programing

language.

Example 2 The proposition-as-type principle allows us to add the property of ordered sets as a new component:

OrdSet = {t : Type; less : t→ t→ B; axm : EqRel(t, less)}
whereEqRel(t, less) is a predicate stating thatless is an equivalence relation ont.

∗This work was supported in part by the DoD Multidisciplinary University Research Initiative (MURI) program administered by the Office of Naval
Research (ONR) under Grant N00014-01-1-0765, the Defense Advanced Research Projects Agency (DARPA) under Grant F30602-98-2-0198, and by NSF
Grant CCR 0204193.

1

Here axm is a new field that defines axiom of the algebraic structure of ordered sets (or specification of the module
OrdSet).

Example 3 In type theories with equality, manifested fields ([16]) may be also represented as specification.

IntOrdSetSig = {t : Type; less : t→ t→ B; mnf : t = Z}
is a signature where typet is bound to be type of integers.

From mathematical point of view the record type is similar to the product type. The essential difference is the subtyping
property: we can extend a record type with new fields and get a subtype of the original record type. E.g.OrdSet and
IntOrdSetSig defined above are subtypes ofOrdSetSig. Subtyping property is important in mathematics: we can apply
all theorems about monoid to smaller types such as groups. It is also essential in programing for inheritance and abstractions.

Different type theories with records were proposed both for proof systems as well as for programming languages ([10, 16,
8, 4, ?, 21] and others). These systems treat record type as a new primitive. In the current paper we are interesting in the
following natural question:whether it is possible to express the notion of records in usual type theories without record type
as primitives?This question is especially interesting for pure mathematical proof systems. As we saw records are a handy
tool to represent algebraic structures. On the other hand records do not seem to be the basic mathematical concept that should
be included in the foundation of mathematics. Records should be rather defined in terms of more abstract mathematical
concepts.

It turned out that it is possible to defineindependent recordsin a sufficient powerful type theory that has dependent
functions [11, 6] or intersection [?]. On the other hand, there is no known way to form dependent records in standard type
theories (cf. [?]). However, Hickey [11] showed thatdependent recordscan be formed in an extension of Martin-Löf type
theory. Namely, he introduced a new type ofvery depended functions. This type is powerful enough to express dependent
records in a type theory and provides a solid mathematical foundation of dependent records. Unfortunately the type of very
depended functions is very complex itself. The rules and the semantics probably is more complicated for this type than for
dependent records. The question is whether there is a simpler way to add dependent records to a type theory?

In this paper we extend a type theory with a simple and easier to understand primitive type constructor,dependent inter-
section. This is a natural generalization of the standard intersection introduced in [?] and [22]. Dependent intersection is
an intersection oftwo types, where the second type may depend on elements of the first one. This type constructor is built
by analogy to dependent products: elements of dependent product are pairs where the type of the second component may
depend on the first component. We will show that dependent intersection allows us to define the record type in a very simple
way. Our definition of records is extensionally equal to Hickey’s ones, but is far simpler. Moreover our constructors (unlike
Hickey’s) allow us to extend record types. For example, having a definition of monoids we can define groups by extending
this definition rather than repeating the axioms of monoid. We also show some other interesting uses of this new type.

The structure of the paper is as follows. In Section2 we recall the concept of the ordinary intersection, then we introduce
a new type,dependent intersection, give the semantics for this type and the corresponding inference rules. Then, in Section3
we informally describe records and their intended properties. We show Hickey’s definition of records and show how record
types are connected to intersections. In Section4 we present the formal definition of records as dependent intersection. In
AppendixB we give an example of an abstract data type (Stack) represented in our type theory as a record. In Section5
we show another application of dependent intersection: the set type constructor{x : T | P (x)} can be defined as dependent
intersection as well.

The theory of dependent intersection and dependent records is implemented in the MetaPRL system [12, 13]. See theories
itt disect anditt record* in Logical Theories in [13]. The MetaPRL system is based on the NuPRL type theory [7],
which is a generalization of Martin-L̈of’s type theory [18].

The NuPRL type theory has proposition-as-types principle and powerful enough to represent any mathematical statement.
NuPRL has equality, subtyping relation and intersection type. Membership and subtyping are extensional. For example,
A ⊆ B does not say anything about structure of these types, but only means that ifx ∈ A thenx ∈ B. As a result the type
checking and subtyping are undecidable.

2 Dependent Intersection

2.1 Ordinary Intersection

It is well known that the binary intersection can be added to a type theory. See for example [19].

2

The intersection of two typesA andB is a new type containing elements that are both inA andB. For example,λx.x+1
is an element of the type(Z → Z)

⋂
(N → N). Two elements are considered to be equal as elements of the typeA

⋂
B if

they are equal in both typesA andB.

Example 4 Let A = N → N and B = Z− → Z (whereZ− is a type of negative integers). Thenid = λx.x and
abs = λx.|x| are both elements of the typeA

⋂
B. Althoughid andabs are equal as elements of the typeN → N (because

these two functions do not differ onN), id andabs are different as elements ofZ− → Z. Therefore,id 6= abs ∈ A
⋂

B.

2.2 New Intersection

We extend this definition to a case when typeB can depend on elements of typeA. Let A be a type andB[x] be a type
for all x of the typeA. We define a new type,dependent intersectionx : A

⋂
B[x]. This type contains all elementsa from A

such thata is also inB[a].

Remark 5 Do not confusethe dependent intersectionwith the intersection of a family of types
⋂

x:A B[x]. The later refers
to an intersection of typesB[x] for all x in A. The difference between these two type constructors is similar to the difference
between dependent productsx : A×B[x] = Σx:AB[x] and the product of a family of typesΠx:AB[x] = x : A → B[x].

Example 6 The ordinary binary intersection is just a special case of a dependent intersection with a constant second argu-
ment

A
⋂

B = x : A
⋂

B.

Example 7 LetA = Z andB[x] = {y : Z | y > 2x} (i.e. B[x] is a type off all integersy, s.t.y > 2x). Thenx : A
⋂

B[x] is
a set of all integers, such thatx > 2x.

Two elementsa anda′ are equal in the dependent intersectionx : A
⋂

B[x] when they are equal both inA andB[a].

Example 8 Let A = {0} → N andB[f] = {1} → Nf(0), whereNn is a type of the firstn natural numbers and{0} and
{1} are types that contain only one element (0 and1 correspondingly). Thenx : A

⋂
B[x] is a type of functionsf that map

0 to a natural numbern0 and map1 to a natural numbern1 ∈ {0, 1, . . . , n0 − 1}. Two such functionsf andf ′ are equal in
this type, when first,f = f ′ ∈ {0} → N, i.e. f(0) = f ′(0), and second,f = f ′ ∈ {1} → Nf(0), i.e. f(1) = f ′(1) < f(0).

2.3 Semantics

We are going to give the formal semantics for dependent intersection types based on the predicative PER semantics
of [2, 3].

We are supposed that our type theory has the judgments of the following forms:
A Type A is a well-formed type
A = B A andB are (intentionally) equal types
a ∈ A a has typeA
a = b ∈ A a andb are equal as elements of typeA

In the PER semantics types are interpreted as partial equivalence relations (PERs) over terms. Partial equivalence relations
are relations that transitive and symmetric, but not necessary reflexive.

According to [3], to give the semantics for a typeA we need to determine when this type is well-formed and specify the
partial equivalence relation for this type (a = b ∈ A). Then we definea ∈ A to be true whena = a ∈ A. We should also
give an equivalence relation on types, i.e. determine when two types are equal.

The partial equivalence relationa = b ∈ A may be defined in two steps. First, we say when a term is an element of the
given type (i.e. specify whena ∈ A is true). Second, we define anequivalencerelation on elements of this type.

The Extension of the Semantics We introduce a new term constructor for dependent intersectionx : A
⋂

B[x]. This
constructor bounds the variablex in B. We extend the semantics of [3] as follows.

• The expressionx : A
⋂

B[x] is a well-formed type if and only ifA is a type andB[x] is a functional type overx : A.
That is, for anyx from A the expressionB[x] should be a type and ifx = x′ ∈ A thenB[x] = B[x′].

3

Γ ` A Type Γ;x : A ` B[x] Type
Γ ` (x : A

⋂
B[x]) Type

(TypeFormation)

Γ ` A = A′ Γ; x : A ` B[x] = B′[x]
Γ ` (x : A

⋂
B[x]) = (x : A′

⋂
B′[x])

(TypeEquality)

Γ ` a ∈ A Γ ` a ∈ B[a] Γ ` x : A
⋂

B[x] Type
Γ ` a ∈ (x : A

⋂
B[x])

(Introduction)

Γ ` a = a′ ∈ A Γ ` a = a′ ∈ B[a] Γ ` x : A
⋂

B[x] Type
Γ ` a = a′ ∈ (x : A

⋂
B[x])

(Equality)

Γ;u : (x : A
⋂

B[x]);∆[u]; x : A; y : B[x] ` C[x, y]
Γ;u : (x : A

⋂
B[x]);∆[u] ` C[u; u]

(Elimination)

Table 1. Inference rules for dependent intersection

• The elements of the well-formed typex : A
⋂

B[x] are such termsa thata is an element of both typesA andB[a].

• Two elementsa anda′ are equal in the well-formed typex : A
⋂

B[x] iff a = a′ ∈ A anda = a′ ∈ B[a]. (Note
that, sincea = a′ ∈ A impliesB[a] = B[a′], this definition is symmetric, i.e. it does not matter whether we write
a = a′ ∈ B[a] or a = a′ ∈ B[a′]).

• Two typesx : A
⋂

B[x] andx : A′
⋂

B′[x] are equal whenA andA′ are equal types and for allx andy from A if
x = y ∈ A thenB[x] = B′[y].

Theorem 9 The semantics given above is an consistent extension of the standard semantics.

This theorem can be proved using the standard technique of [3].

2.4 The Inference Rules

The corresponding inference rules are presented in Table1.

Note that rules(TypeFormation)and(Introduction)are redundant when we defineA Type
∆= (A = A) anda ∈ A

∆=
(a = a ∈ A).

Theorem 10 All rules of Table1 are valid in the semantics given above.

This theorem is proved by straightforward application of the semantics definition.

Theorem 11 The following rules can be derived from the primitive rules of Table1 in a type theory with the appropriate cut
rule.

Γ ` a = a′ ∈ (x : A
⋂

B[x])
Γ ` a = a′ ∈ A

(CaseEquality1)

Γ ` a = a′ ∈ (x : A
⋂

B[x])
Γ ` a = a′ ∈ B[a]

(CaseEquality2)

This rules was derived in the MetaPRL system (a system based on the NuPRL type theory) and the proof was machine-
checked.

4

Theorem 12 Dependent intersection is associative, i.e.

x : A
⋂

(y : B[x]
⋂

C[x, y]) =e z : (x : A
⋂

B[x])
⋂

C[z, z]

where=e stands for extensional equality, that isT1 =e T2 whenT1 ⊆ T2 andT2 ⊆ T1, i.e. these two types have the same
elements and the same equality relations.

The formal proof was also checked by the MetaPRL system. We show here only an informal proof. An elementx has
typea : A

⋂
(b : B[a]

⋂
C[a, b]) iff it has typesA andb : B[x]

⋂
C[x, b]. The later is a case iffx ∈ B[x] andx ∈ C[x, x].

On the other hand,x has typeab : (a : A
⋂

B[a])
⋂

C[ab, ab] iff x ∈ (a : A
⋂

B[a]) andx ∈ C[x, x]. The former means
that x ∈ A andx ∈ B[x]. Thereforex ∈ a : A

⋂
(b : B[a]

⋂
C[a, b]) iff x ∈ A andx ∈ B[x] andx ∈ C[x, x] iff

x ∈ ab : (a : A
⋂

B[a])
⋂

C[ab, ab].

3 Records

We are going to define record type using dependent intersection. In this section we informally describe what properties
we are expecting from records. The formal definitions are presented in Section4.

3.1 Plain Records

Records are collection of labeled fields. We use the following notations for records:

{x1 = a1, . . . , xn = an} (1)

wherex1, . . . , xn arelabelsanda1, . . . an are corresponding fields. Usually labels have a string type, but generally speaking
labels can be of any fixed typeLabel with a decidable equality. We will usethe truetype font for labels.

The extraction operatorr.x is used to access record fields. Ifr is a record thenr.x is a field of this record labeledx. That
is we expect the following reduction rule:

{x1 = a1, . . . , xn = an}.xi −→ ai.

Fields may have different types. If eachai has typeAi then the whole record (1) has the type

{x1 : A1, . . . , xn : An}. (2)

Also we want the natural typing rule for the field extraction: for any recordr of the type (2) we should be able to conclude
thatr.xi ∈ Ai.

The main difference between record types and productsA1 × · · · × An is that record type has thesubtyping property.
Given two recordsR1 andR2, if any label declared inR1 as a field of typeA is also declared inR2 as a field of typeB, such
thatB ⊆ A, thenR2 is subtype ofR1. In particular,

{x1 : A1, . . . , xn : An} ⊆ {x1 : A1, . . . , xm : Am} (3)

wherem < n.

Example 13 Let Point = {x : Z; y : Z} andColorPoint = {x : Z; y : Z; color : Color}. Then the record{x = 0; y =
0; color = red} is not only aColorPoint, but it is also aPoint, so we can use this record wheneverPoint is expected.
For example, we can use it as an argument of the function of the typePoint → T . Further the result of this function does
not depend whether we use{x = 0; y = 0; color = red} or {x = 0; y = 0; color = green}. That is, these two records
are equal as elements of the typePoint, i.e.

{x = 0; y = 0; color = red} =
{x = 0; y = 0; color = green} ∈ {x : Z; y : Z}

This is a natural corollary from the subtyping property.

5

Using subtyping one can module the abstract fields. Consider a recordr that has one “private” fieldx of the typeA and
one “public” fieldy of the typeB. This record has type{x : A; y : B} Using subtyping property we can conclude that it
also has type{y : B}. Now we can consider type{y : B} as a public interface for this record. Anyone who knows that
r ∈ {y : B} have access to fieldy, but access to fieldx would be type invalid. That is, a function of the type{y : B} → T
can manipulate only with fieldy on its argument, but we can pass a record with fieldx to it.

Further, records do not depend on field ordering. For example,{x = 0; y = 1} should be equal to{y = 1; x = 0},
moreover{x : A; y : B} and{y : B; x : A} should define the same type.

3.1.1 Records as Dependent Functions

Records may be considered as mappings from labels to the corresponding fields. Therefore it is natural to define a record
type as a function type with the domainLabel (cf. [6]). Since the types of each field may vary, one should use dependent
function type (i.e.,Π type). LetField[l] be a type of a field labeledl. For example, for the record type (2) take

Field[l] ∆=
if l = x1 then A1 else

. . .

if l = xn then An

else Top

Then define the record type as the dependent function type:1

{x1 : A1; . . . ; xn : An} ∆= l : Label → Field[l]. (4)

Now records may be defined as functions:

{x1 = a1; . . . ; xn = an} ∆=
λl.if l = x1 then a1 else

. . .

if l = xn then an

(5)

And extraction is defined as application:

r.l
∆= r l (6)

One can see that these definitions meet the expecting properties mentioned above including subtyping property.

3.1.2 Records as Intersections

Using above definitions we can prove that in case when allxi’s are distinct labels

{x1 : A1; . . . ; xn : An} =e {x1 : A1}
⋂

. . .
⋂
{xn : An}. (7)

This property provides us a simpler way to define records. First, let us define the type of records with only one field. We
define it as a function type like we did it in the last section, but for single-field records we do not need depend functions, so
we may simplify the definition:

{x : A} ∆= {x} → A (8)

where{x} is the singleton subset ofLabel.
Now we may take (7) as a definition of an arbitrary record type (cf. [?]).

Example 14 The record{x = 1; y = 2} by definition (5) is a function that mapsx to 1 andy to 2. Therefore it has type
{x} → Z = {x : Z} and also has type{y} → Z = {y : Z}. Hence it has type{x : Z; y : Z} = {x : Z}⋂{y : Z}.

1 We use the standard NuPRL notationsx : A → B[x] =
Q
x:A

B[x] for the type of functions that maps eachx ∈ A to an element of the typeB[x].

6

One can see that when all labels are distinct definitions (4) and (7)+(8) are equivalent. That is, for any record expression
{x1 : A1; . . . ; xn : An} wherexi 6= xj , these two definitions define two extensionally equal types.

However, definitions (7)+(8) differ from the traditional ones, in the case when labels may coincide. Most record calculi
prohibit repeating labels in the declaration of record types, e.g., they do not recognize the expression{x : A; x : B} as a valid
type. On the other hand, in [11] in the case when label coincide the last field overlap the previous ones, e.g.,{x : A; x : B} is
equal to{x : B}. In both these cases many typing rules of the record calculus need some additional conditions that prohibits
coincident labels. For example, the subtyping relation (3) would be true only when all labelsxi are distinct.

We will follow the definition (7) and allow repeated labels and assume that

{x : A; x : B} = {x : A
⋂

B}. (9)

This may look unusual, but this notation significantly simplifies the rules of the record calculus, because we do not need to
worry about coincident labels. Moreover, this allow us to have multiply inheriting (see Section4.3 for an example). Note
that the equation (9) holds also in Bickford’s definition of records [?].

3.2 Dependent Records

We want be able to represent abstract data types and algebraic structures as records. For example, a semigroup may be
considered as a record with the fieldscar (representing a carrier) andproduct (representing a binary operation). The type
of car is the universeUi (the type of types). The type ofproduct should becar×car→ car. The problem is that the type
of product depends on the value of the fieldcar. Therefore we cannot use plain record types to represent such structures.

We need dependent records [?, 11, 21]. In general a dependent record type has the following form

DepRec = {x : A; y : B[x]; z : C[x, y]; . . . }

That is, the type of a field in such records can depend on the values of the previous fields.
The following two properties show the intended meaning of this type.

1. The record{x = a; y = b; z = c; . . . } has typeDepRec when

a ∈ A, b ∈ B[a], c ∈ C[a, b], . . .

2. For any recordr ∈ DepRec

r.x ∈ A, r.y ∈ B[r.x], r.z ∈ C[r.x, r.y], . . .

Example 15 LetSemigroupSig be the record type that represents the signature of semigroups:

SemigroupSig = {car : Ui; product : car× car→ car}.

Semigroups are elements ofSemigroupSig satisfying the associative axiom. This axiom may be represented as an additional
field.

Semigroup = { car : Ui;
product : car× car→ car;
axm : ∀x, y, z : car. (x · y) · z = x · (y · z)}

wherex · y stands forproduct(x, y).

3.2.1 Dependent Records as Very Dependent Functions

We cannot define dependent record type using “ordinary” dependent function type, because the type of the fields depends not
only on labels, but also on values of other fields.

To represent dependent records Hickey [11] introduced thevery dependent functiontype constructor:

{f | x : A → B[f, x]} (10)

7

HereA is the domain of the function type and the rangeB[f, x] can depends on the argumentx and the functionf itself.
That is type (10) refers to the type of all functionsg with the domainA and the rangeB[g, a] on any argumenta ∈ A.

For instance,SemigroupSig can be represented as a very dependent function type

SemigroupSig
∆= {r | l : Label → Field[r, l]} (11)

whereField[r, l] ∆=

if l = car then Ui else

if l = product then r.car× r.car→ r.car

else Top

Not every very dependent function type has a meaning. For example the range of the function on argumenta cannot depend
onf(a) itself. For instance, the expression

{f | x : A → f(x)}
is not a well-formed type.

The type (10) is well-formed if there is some well-founded order< on the domainA, and the range typeB[x, f] onx = a
depends only on valuesf(b), whereb < a. The requirement of well-founded order makes the definition of very-dependent
functions to be very complex. See [11] for more details.

3.2.2 Dependent Records as Dependent Intersection

By using dependent intersection we can avoid the complex concept of very dependent functions. For example, we may define

SemigroupSig
∆= self : {car : Ui}

⋂
{product : self .car× self .car→ self .car}

Hereself is a bound variable that is used to refer to the record itself considered as a record of the type{car : Ui}. This
definition can be read as following:

r has typeSemigroupSig, when first,r is a record with a fieldcar of the typeUi, and second,r is a record
with a fieldproduct of the typer.car× r.car→ r.car.

This definition of theSemigroupSig type is equal to (11), but it has two advantages. First, it is much simpler. Second,
dependent intersection allows us to extend theSemigroupSig type to theSemigroup type by adding an extra fieldaxm:

Semigroup
∆= self : SemigroupSig

⋂
{axm : ∀x, y, z : self .car (x · y) · z = x · (y · z)}

wherex · y stands forself .product(x, y).
We can define dependent record type of an arbitrary length in this fashion as a dependent intersection of single-field

records associated to the left.
Note thatSemigroup can be also defined as an intersection associated to the right:Semigroup =

rc : {car : Ui}
⋂

(
rp : {product : rc.car× rc.car→ rc.car}

⋂
{axm : ∀x, y, z : rc.car (x · y) · z = x · (y · z)})

wherex · y stands forrp.product(x, y). Hererc andrp are bound variables. Both of them refer to the record itself, butrc

has type{car : Ui} andrp has type{product : . . . }. These two definitions are equal, because of associativity of dependent
intersection (Theorem12).

Note that Robert Pollack [21] considered two types of depended records: left associating records and right associating
records. However, in our framework left and right association are just two different ways of building the same type. We will
allow using both of them. Which one to chose is the matter of taste.

8

4 Record Calculus

4.1 The Formal Definitions

Now we are going to give the formal definitions of records using dependent intersection.

4.1.1 Records

Elements of record types are defined as previous. They map labels to the corresponding fields. We could pick any function
as a definition of an empty record:

{} ∆= λl.l

The definitions of field update/extension and field selection are the same as in [11]:

(r.x := a) ∆= (λl.if l = x then a else r l)
r.x

∆= r x

These are basic operations. We can construct any record by these operations. That is, we will consider record{x1 =
a1; . . . ; xn = an} as a syntax sugar for expression:

{}.x1 := a1.x2 := a2.xn := an

These definitions provides that

{x1 = a1; . . . ; xn = an} = λl.if l = x1 then a1 else

. . .

if l = xn then an

4.1.2 Record Types

Single-field record type is defined as

{x : A} ∆= {x} → A

where{x} ∆= {l : Label | l = x ∈ Label} is a singleton set2.
Independent concatenation of record types is defined as

{R1; R2} ∆= R1

⋂
R2

Dependent concatenation of record type (left associative) is defined as

{self : R1; R2[self]} ∆= self : R1

⋂
R2[self]

Syntactical Remarks Hereself is a variable bounded inR2. We will usually use the name “self” for this variable and use
the shortening{R1; R2[self]} for this type. Further, we will omit “self .” in the body ofR2, e.g. we will write justx for
self .x, when such notation does not lead to misunderstanding.
We assume that this concatenation is a left associative operation and we will omit inner braces. For example, we will write
{x : A;y : B[self];z : C[self]} instead of{{{x : A}; {y : B[self]}}; {z : C[self]}}. Note that in this expression there are
two distinct bound variableself . First one is bound inB and refers to the record itself as a record of the type{x : A}. Second
self is bound inC, it also refers to the same record, but it has type{x : A; y : B[self]}.

2{x : A | P [x]} is a standard type constructor in the NuPRL type theory [7]. See also Section5.

9

Note that the definition of independent concatenation is just a partial case of dependent concatenation, whenR2 does not
depend onself .

The definition of right associating records is

{x : x : A; R[x]} ∆= self : {x : A}
⋂

R[self .x]

Syntactical Remarks Herex is a variable bounded inR that represents a fieldx. Note that we canα-convert the variable
x, but not a labelx, e.g.,{x : x : A; R[x]} = {y : x : A; R[y]}, but{x : x : A;R[x]} 6= {y : y : A;R[y]}. We will usually
use the same name for labels and corresponding bound variables.
This connection is right associative, e.g.,{x : x : A; y : y : B[x]; z : C[x, y]} stands for{x : x : A; {y : y : B[x]; {z :
C[x, y]}}}.

4.2 The Rules

The rules of our record calculus are represented in AppendixA. All these rules are derivable from the definitions given
above. They were derived in the MetaPRL system.

Then using these rules we can prove the following subtyping properties:

{R1; R2} ⊆ R1

{R1; R2} ⊆ R2

{R1; R2[self]} ⊆ R1

{x : x : A; R[x]} ⊆ {x : A}
` R1 ⊆ R′1 self : R1 ` R2[self] ⊆ R′2[self]

` {R1; R2[self]} ⊆ {R′1;R′2[self]}
` A ⊆ A′ x : A ` R[x] ⊆ R′[x]

` {x : x : A; R[x]} ⊆ {x : x : A′;R′[x]}
Further, we can establish two facts that states the equality of left and right associating records.
{x : x : A; R[x]} =e {x : A;R[self .x]}
{R1; {x : x : A[self];R2[self , x]}} =e

{{R1; x : A[self]}; R2[self , self .x]}
For example, using these two equalities we can prove that
{x : A; y : B[self .x]; z : C[self .x; self .y]} =
{x : x : A; y : y : B[x]; z : C[x; y]}
Personally I prefer the left associating records, because first, the left associating constructor allows us to extend records.

Second, it is more easily to prove the inclusion of such extension. On the other hand, one can find that right associating
records are more natural, because in these records bound variables refer to fields rather than to records itself. It makes
dependent records to be more similar to dependent products likex : A× (y : B[x]× C[x, y]).

4.3 Examples

Semigroup Example Now we can define theSemigroupSig type in two ways:

{car : Ui; product : car× car→ car} or

{car : car : Ui; product : car × car → car}

Note that in the first definitioncar in the declaration ofproduct stands forself .car, and in the second definitioncar is just
a bound variable.

We can defineSemigroup be extendingSemigroupSig:

{SemigroupSig; axm : ∀x, y, z : car (x · y) · z = x · (y · z)}

10

or as a right associating record:

{car : car : Ui;
product : product : car × car → car;
axm : ∀x, y, z : car (x · y) · z = x · (y · z)}

In the first casex · y stands forself .product(x, y) and in the second case for justproduct(x, y).

Multiply Inheriting Example A monoid is a semigroup with a unit. So,

MonoidSig = {SemigroupSig; unit : car}

A monoid is an element ofMonoidSig which satisfies the axiom of semigroups and an additional property of the unit. That
is, Monoid inherits fields from bothMonoidSig andSemigroup. We can define theMonoid type as follows:

Monoid = {MonoidSig; Semigroup;
unit axm : ∀x : car x · unit = x}

Note, that sinceMonoidSig andSemigroup shared fieldscar andproduct, these two fields present in the definition of
Monoid twice. This does not create problems, since we allow repeating labels (Section3.1.2).

Now we have the following subtyping relations:

SemigroupSig ⊃ MonoidSig
∪ ∪

Semigroup ⊃ Monoid

5 Sets and Dependent Intersections

By definition, the set type{x : T |P [x]} is a subtype ofT , which contains only such elementsx of T that satisfy property
P [x] (see [7]). Set types is used to hide a witness ofP [x].

Example 16 The type of natural numbers is defined asN = {n : Z | n ≥ 0}. Without set types we would have to defineN as
n : Z× (n ≥ 0). In this case we would not have the subtyping propertyN ⊆ Z.

Example 17 Instead of defining semigroups as records of theSemigroupSig type with an additional fieldaxm, we could
define theSemigroup type as a subset ofSemigroupSig:

Semigroup
∆= {S : SemigroupSig | ∀x, y, z : S.car } (12)

In the NuPRL type theory the set type is a primitive type. We will show that the set type may be defined as a dependent
intersection.

First, we assume that our type theory has theTop type, that is a supertype of any other type. We will need only one
property of theTop type: T

⋂
Top = T for any typeT . (In NuPRLTop is defined as

⋂
x:V oid V oid, whereV oid is the

empty type).
Now consider the following type (squash operator):

[P] ∆= {x : Top | P}

[P] is an empty type whenP is false, and is equal toTop whenP is true. The similar type was considered in [15] as a
primitive type. We can prove that

{x : T | P [x]} =e x : T
⋂

[P [x]] (13)

We could take (13) as a definition of sets, but it would create a loop, because we defined squash operator as a set. To break
this loop one can either take squash operator as a primitive type in the way it was done in [15]. That makes sense, because

11

the squash operator is simpler than the set type constructor. Another way to break the loop is to define squash using other
primitives. For example, one can define the squash type using union:

[P] ∆=
⋃

x:P

Top.

(Union is a type that dual to intersection [19, 12]). In the presence of Markov’s principle [15] there is an alternative way to
define[P]:

[P] ∆= ((A ≡> Void) ≡> Void)

whereA ≡> B
∆=

⋂
x:A

B.

The Mystery of Notations It is very surprising that braces{. . . } was used for sets and for records independently for a
long time. But now it turns out that sets and records are almost the same thing, namely, dependent intersection! Compare the
definitions for sets and records:

{x : T | P [x]} ∆= x : T
⋂

[P [x]]
{self : R1; R2[self]} ∆= self : R1

⋂
R2[self]

The only differences between them are that we use squash in the first definition and write “|” for sets and “;” for records.
So, we will use the following definitions for records:

{self : R1 |R2[self]} ∆= {self : R1; [R2[self]]} = self : R1

⋂
[R2[self]]

{x : x : A |R[x]} ∆= {x : x : A; [R[x]]} =
self : {x : A}⋂

[R[self .x]]
This gives us right to use the shortening notations as in Section4.1.2to omit inner braces and “self ”. For example, we

can rewrite the definition of theSemigroup type (12) as

Semigroup
∆= {car : Ui;

product : car× car→ car |
∀x, y, z : car (x · y) · z = x · (y · z)}

Remark Note that we cannot define dependent intersection as a set:

x : A
⋂

B[x] ∆= {x : A | x ∈ B[x]}. (wrong!)

First of all, this set is not well-formed in the NuPRL type theory (this set would be a well-formed type, only whenx ∈ B[x]
is a type for allx ∈ A, but the membership is a well-formed type in the NuPRL type theory, only when it is true). Second,
this set type does not have the expected equivalence relation. Two elements are equal in this set type, when they are equal
just inA, but to be equal in the intersection they must be equal in both typesA andB (see Example4).

6 Acknowledgments

I am very grateful for the productive discussions and useful suggestions to Robert Constable and Aleksey Nogin.

References

[1] Martín Abadi and Luca Cardelli.A Theory of Objects. Springer, 1996.

[2] Stuart F. Allen. A Non-type-theoretic Definition of Martin-Löf’s Types. In D. Gries, editor,Proceedings of the 2nd

IEEE Symposium on Logic in Computer Science, pages 215–224. IEEE Computer Society Press, June 1987.

[3] Stuart F. Allen.A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis, Cornell University, 1987.

12

[4] Lennart Augustsson. Cayenne — a language with dependent types. InInternational Conference on Functional Pro-
gramming, pages 239–250, 1998.

[5] Mark Bickford and Jason J. Hickey. Predicate transformers for infinite-state automata in NuPRL type theory. In
Proceedings of3rd Irish Workshop in Formal Methods, 1999.

[6] Robert L. Constable. Types in logic, mathematics and programming. In Sam Buss, editor,Handbook of Proof Theory,
chapter 10. Elsevier Science, 1997.

[7] Robert L. Constable et al.Implementing Mathematics with the NuPRL Development System. Prentice-Hall, 1986.

[8] Judicäel Courant. An applicative module calculus. InTAPSOFT, Lectures Notes in Computer Science, pages 622–636,
Lille, France, April 1997. Springer-Verlag.

[9] N. G. deBruijn. The mathematical language Automath: its usage and some of its extensions. In J. P. Seldin and J. R.
Hindley, editors,Symposium on Automatic Demonstration, volume 125 ofLecture Notes in Mathematics, pages 29–61.
Springer-Verlag, 1970.

[10] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with sharing. InConference
record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 123–
137, Portland, OR, January 1994.

[11] Jason J. Hickey. Formal objects in type theory using very dependent types. InFoundations of Object Oriented Lan-
guages 3, 1996. Available electronically through theFOOL 3 home page.

[12] Jason J. Hickey.The MetaPRL Logical Programming Environment. PhD thesis, Cornell University, Ithaca, NY, January
2001.

[13] Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home page.http://metaprl.org/ .

[14] T. B. Knoblock and R. L. Constable. Formalized metareasoning in type theory. InProceedings of the 1st Symposium
on Logic in Computing Science, pages 237–248. IEEE, 1986.

[15] Alexei Kopylov and Aleksey Nogin. Markov’s principle for propositional type theory. In L. Fribourg, editor,Computer
Science Logic, Proceedings of the 10th Annual Conference of the EACSL, volume 2142 ofLecture Notes in Computer
Science, pages 570–584. Springer-Verlag, 2001.

[16] Xavier Leroy. Manifest types, modules, and separate compilation. InProceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 109–122. ACM Press, 1994.

[17] Per Martin-L̈of. Constructive mathematics and computer programming. InProceedings of the Sixth International
Congress for Logic, Methodology, and Philosophy of Science, pages 153–175, Amsterdam, 1982. North Holland.

[18] Per Martin-L̈of. Intuitionistic Type Theory, Studies in Proof Theory, Lecture Notes. Bibliopolis, Napoli, 1984.

[19] Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism. Technical Report CMU-
CS-91-106, Carnegie Mellon University, February 1991.

[20] Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism. Technical Report CMU-
CS-91-106, Carnegie Mellon University, February 1991.

[21] Robert Pollack. Dependently typed records for representing mathematical structure. In J. Harrison and M. Aagaard,
editors,Theorem Proving in Higher Order Logics: 13th International Conference, TPHOLs 2000, volume 1869 of
Lecture Notes in Computer Science, pages 461–478. Springer-Verlag, 2000.

[22] G. Pottinger. A type assignment for the strongly normalizableλ-terms. In Jonathan P. Seldin and J. Roger Hindley,
editors,To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, pages 561–577. Academic
Press, London, 1980.

13

http://www.cis.upenn.edu/~bcpierce/FOOL/FOOL3.html�
http://metaprl.org/�

Reduction rules
(r.x := a).x −→ a
(r.y := b).x −→ r.x whenx 6= y.

In particular:{x1 = a1; . . . ; xn = an}.xi −→ ai when allxi’s are distinct.

Type formation

Single-field record:

Γ ` A Type Γ ` x ∈ Label

Γ ` {x : A}Type

Independent record:

Γ ` R1 Type Γ ` R2 Type
Γ ` {R1; R2}Type

Dependent record:

Γ ` R1 Type Γ; self : R1 ` R2[self] Type
Γ ` {R1;R2[self]}Type

Right associating record:

Γ ` {x : A}Type Γ;x : A ` R[x] Type
Γ ` {x : x : A; R[x]}Type

Introduction (membership rules)

Single-field record:

Γ ` a ∈ A Γ ` x ∈ Label

Γ ` r.x := a ∈ {x : A}
Γ ` r ∈ {x : A} Γ ` x 6= y ∈ Label

Γ ` (r.y := b) = r ∈ {x : A}
Independent record:

Γ ` r ∈ R1 Γ ` r ∈ R2

Γ ` r ∈ {R1;R2}
Dependent record:

Γ ` r ∈ R1 Γ ` r ∈ R2[r] Γ ` {R1; R2[self]}Type
Γ ` r ∈ {R1;R2[self]}

Right associating record:

Γ ` r ∈ {x : A} Γ ` r ∈ R[r.x] Γ ` {x : x : A; R[x]}Type
Γ ` r ∈ {x : x : A;R[x]}

Elimination (inverse typing rules)

Single-field record:

Γ ` r ∈ {x : A}
Γ ` r.x ∈ A

Independent record:

Γ ` r ∈ {R1; R2}
Γ ` r ∈ R1 Γ ` r ∈ R2

Dependent record:

Γ ` r ∈ {R1; R2[self]}
Γ ` r ∈ R1 Γ ` r ∈ R2[r]

Right associating record:

Γ ` r ∈ {x : x : A; R[x]}
Γ ` r.x ∈ A Γ ` r ∈ R[r.x]

Table 2. Inference rules for records

14

A Inference Rules for Record Calculus

The basic rules of our record calculus are shown in Table2.
We do not show the equality rules here, because in fact, these rules repeat rules in Table2 and can be derived from them

using substitution rules in the NuPRL type theory. For example, we have the following rules

Γ ` a = a′ ∈ A Γ ` x = x′ ∈ Label

Γ ` (r.x := a) = (r′.x′ := a′) ∈ {x : A}
Γ ` r = r′ ∈ R1 Γ ` r = r′ ∈ R2

Γ ` r = r′ ∈ {R1; R2}
In particular, we can prove that

{x = 0; y = 0; color = red} =
{x = 0; y = 0; color = green} ∈ {x : Z; y : Z}

B Final Example: Abstract Data Type

We can represent abstract data types as dependent records. For example, we can define data structure stack as following:

Stack(A) ∆=
{car : Ui;
empty : car;
push : car→ A → car;
pop : car→ (car×A + Unit) |

∀s : car ∀a : A pop(push s a) = inl (s, a) |
pop(empty) = inr •}

This definition provides us not only the typing information of the functionspop andpush , but also specify the intended
behavior of these functions. An implementation of the stack data type would be an element of the typeStack(A). For
example, we can implement stacks as lists:

stack as list(A) ∆=
{ car = A List;
empty = nil;
push = λs.λa.a :: s;
pop = λs.match s with

nil => inr •
a :: s′ => inl (s′, a)}

The following theorem states that our implementation of stacks indeed satisfy the specification.

Theorem 18 For any typeA
stack as list(A) ∈ Stack(A).

This theorem was proved in the MetaPRL system.

15

