Partial Objects in Type Theory

Scott Fraser Smith
Ph. D. Thesis

TR 88-938
August 1988

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

PARTIAL OBJECTS IN TYPE THEORY

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Scott Fraser Smith
January 1989

© Scott Fraser Smith 1989
ALL RIGHTS RESERVED

Partial Objects in Type Theory

Scott Fraser Smith, Ph.D.
Cornell University 1989

Intuitionistic type theories, originally developed by Martin-Lof, provide a founda-
tion for intuitionistic mathematics, much as set theory provides a foundation for
mathematics. They are of interest to computer scientists because the objects typed
are computations, making type theory an appropriate setting for reasoning about
computation. Type theories such as Nuprl or the theories of Martin-Lof have types
for objects that always terminate, but objects which may diverge are not directly
typable. If type theory is to be a full-fledged theory for reasoning about computa-
tions, we need to be able to reason about potentially diverging ob jects.

In this thesis we show how potentially diverging computations, which we call
partial objects, may be typed by extending type theory to partial object type theory.
New partial types are added to type partial objects. These types are usable: partial
objects written in natural program notation can easily be shown to lie in the types.
In addition to being able to express partial objects, it is also important to be able
to reason about them; for this purpose general principles are given for proving facts
about partial objects via induction.

The resulting theory serves as a foundation for computational as well as math-
ematical reasoning. It also gives insights into abstract recursion theory, leads to a
new method for constructive reasoning, and sheds light on inductive methods for
reasoning about recursive computation.

Biographical Sketch

Scott Fraser Smith was born in 1961. In 1983, he was awarded a BS in Chemistry
and Computer Science from Purdue University. Five years later, he completed his
doctorate at Cornell University.

i

Acknowledgements

This is not really my thesis; it collectively belongs to a group of people. My advisor,
Prof. Constable, did admirably what advisors are meant to do: he pointed the way,
and then listened carefully. Other members of the PRL group also can claim part
of this thesis: Stuart Allen’s work is the foundation on which this thesis lies, and
his critiques of my work have always been relavatory, helping to turn ill-stated and
ill-thought-out ideas into whole ones. Nax Mendler’s work has also been a model for
mine. The PRL group as a whole provided much intellectual stimulation, friendship
and comraderie.

My undergraduate years at Purdue were well spent, in large part because I had
the luck to meet up with Bill Jorgensen and others in the chemistry department.

Except the small part that belongs to me, the rest of this thesis was given to
me by family and friends.

v

Contents

1

2

Introduction
1.1 Overviewofthisthesis

Type theory: background

2.1 Type systems and type theories

2.2 Principles of type theory oo
221 Types o e e
222 Equality e
2.2.3 The propositions-as-types principle
2.2.4 Type theory as a foundation for mathematics
2.2.5 Computational and mathematical interpretations.

2.3 Nuprl e
2.3.1 The Nuprltheory
2.3.2 The Nuprlsystem

A partial object type theory

3.1 Partial objects in existing type theories

3.2 New principles for partial objects

3.2.1 The partial type constructor
3.2.2 Forming partial objects,
3.2.3 Reasoning about partial objects

3.3 A partial object typetheory. oo
3.4 Thelanguage of expressions
3.5 Assertions and hypothetical assertions
3.6 Rules

3.6.1 Ruleconventions i i
3.6.2 UNIVETSES . . « v v v v e e e e e e e e e e

W -

© 00 =3 Ut Ot i

363 Is e 22

3.6.4 Evaluation 0. 23
36.5 Equivalenceo, 25
3.6.6 Inducement 26
3.6.7 Termination 27
3.6.8 Membership, 28
3.6.9 Expression 28
3.6.10 Natural numbers 29
3.6.11 Dependent function space 29
3.6.12 Dependent product space 30
3.6.13 Partial type 31
3.6.14 Fixed-points 32
3.6.15 Computational induction 33
3.6.16 Miscellaneous L. 33
3.7 Reasoningin thetheory, 34
3.8 Logical reasoning oL, 34
3.9 Extract-styleproof L L. 35
3.9.1 An extract-styleproof L. 36
3.10 Defining Unions 37
3.11 Using typesandrules, 37
3.11.1 Using partial types L. 38
3.11.2 Untypedreasoning 39
3.12 Reasoning by induction 39
3.12.1 An example of computational induction 40
3.12.2 Induction on natural numbers 42
3.13 Defining equalities oL oL 42
Semantics of partial object type theory 44
4.1 Theexpressions. v vt v i i vt 45
4.2 The typefree assertions 45
4.3 Defining the types and their inhabitants 49
4.4 Admissibility 55
4.4.1 Non-admissibletypes 56
4.4.2 Computational lemmas 56
4.4.3 Proof of admissibility 64
4.5 Consistency of therules 67
451 Conventions. e e e 67

vi

4.5.2 Proof of consistency

5 Topics in partial object type theory

A

5.1

5.2

5.3
5.4
5.5

Type theory as a programming logic
5.1.1 What makes good programming logic?
5.1.2 LCF and type theory compared . . .
Fixed-points and induction
5.2.1 A unified fixed-point principle
5.2.2 Computational induction reconsidered
5.2.3 Two principles compared
Partial propositions
Abstract computability theory
Building a partial object type theory
5.5.1 Expressing computational induction .
5.5.2 Expressing the fixed-point principle .

A partial object Nuprl
Al Therules

Bibliography

vii

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

74
74
75
76
7
77
79
80
81
82
83
83
85

86
87

94

Chapter 1

Introduction

Type theories such as Nuprl [CAB*86] or Martin-Lof’s CMCP [ML82] are founda-
tional theories for constructive mathematics; Martin-Lof had philosophical motiva-
tions for developing his intuitionistic type theory. Nuprl incorporates many of the
ideas of CMCP, but it is also designed to be of practical use as the logic in a powerful
theorem-proving system and as a foundation for reasoning about computing.

Type theories have an extensive collection of types, far surpassing those found
in programming languages. Like programming languages, members of types are
computations, but unlike programming language types, the computational objects
typed in type theory are total objects: they always have values. For instance, the
type A — B is the type of all total functions from A to B. Programming language
types, on the other hand, contain partial objects, and there functions in A — B are
partial functions from A to B.

As computer scientists, we would like type theory to be a foundational theory of
computation. Type theory is a powerful theory for reasoning about total objects,
but since there are no types for partial objects it is difficult to define and reason
about them. It is crucial for a theory of computation to have as a component a
theory of partial computation.

In Nuprl, it is possible to type partial functions by using the subtype constructor
{z:A| P(z)} (the type of all elements of A with property P) to restrict the domain
of the function to exactly the elements for which it converges [CM85, CAB*86|.
So if D(z) is true just when f(z) converges, f may be given the total type {z:A |
D(z)}— B. Domains D(z) can in fact be defined for many functions. Some problems
with this approach are functions must be proven to converge before they can be
applied, and the domains D are large, making reasoning cumbersome. Another

1

2 Introduction

solution would be desired, where partial objects are interpreted as themselves, not
as total objects with elaborate conditions attached.

In this thesis, we give a new approach for constructing and reasoning about
partial objects which we call partial object type theory. We propose new partial
types A and principles for using these types which allow unbounded computations
to be expressed, typed, and reasoned about; the resulting theory is comparable in
strength to Edinburgh LCF [GMW?79] in its ability to reason about computations.
The semantic treatment of types defined by Allen [All87b] is extended to give a
natural semantics for these new concepts, meaning type theories that incorporate
them can be proven consistent.

This new theory also sheds a different and interesting light on some old and
venerable concepts. The theory is based on an abstract open-ended notion of com-
putation which does not presume Church’s thesis, but it comes as a surprise that
there still are problems which can be proven unsolvable in the theory. Standard
results of recursion theory may then be proven, and as more properties about com-
putations are assumed more theorems are provable [CS88].

A new method for reasoning constructively may be used in the theory. To reason
in type theory propositions are interpreted as types. Propositions P are translated
to types P* such that P is true just when P* is nonempty; if p € P* pis a
construction that validates P. Using partial types, it is possible to construct partial
propositions like Vz.3y. P(z,y): the constructions that validate partial propositions
may not always converge. Partial propositions are thus a logical notion of partiality.

In partial object type theory a general fixed-point principle allows fixed-points
of functions to be typed. Fixed-point induction, developed by deBakker and Scott,
is a general principle for reasoning about recursive programs; it is the induction
principle used in LCF. We show fixed-point induction to be a specific case of the
fixed-point principle. Computational induction is a new form of inductive reasoning
in partial object type theory. Although computational induction is founded on
different principles than the fixed-point principle, the two of them prove many of
the same facts. Computational induction is a more straightforward principle, but
proofs are longer than corresponding proofs done with the fixed-point principle.

Partial object type theory emerges as a viable theory for reasoning about com-
putations, and makes type theory much more convincing as a foundation for com-
putational reasoning, and thus more viable as a practical tool for writing verifiably
correct software.

1.1 Overview of this thesis 3

1.1 Overview of this thesis

Chapter two provides background into some of the important principles of type
theory. These principles are relevant to the construction of partial object type
theory, and will be referenced frequently in later chapters.

In chapter three, a partial object type theory is presented. This theory is loosely
based on Nuprl and CMCP, but unlike these theories, types come without any notion
of equality on their members, and it is possible to freely reason about untyped
computations. This theory was designed to give as simple a presentation of partial
objects as possible. After the rules of the theory are given, sample theorems are
proven which show how the theory may be used to reason.

Chapter four consists of a semantic account of the theory of chapter three, based
on the non-type-theoretic semantics of Allen. This shows the rules of the theory to
be sound, meaning the concept of partial object is sound. The types are interpreted
by defining them inductively. Most of the rules then are quickly justifiable, but the
fixed-point rule requires extra work. Only certain admzissible types have fixed-points,
and to prove that a collection of types is admissible requires the computational
behavior of fixed-points to be examined in detail.

Chapter five is a loose collection of consequences of partial objects. First we
argue that the theory is a powerful programming logic by way of comparison with
LCF. LCF has proven itself to be useful, so type theory should also be useful,
hopefully more so. The relationship between the fixed-point principle, fixed-point
induction, and computational induction is discussed; this sheds light on the nature
of induction over computations. Partial propositions and abstract computability,
mentioned earlier, are briefly discussed. To conclude, we examine what the difficul-
ties are in constructing a partial object type theory. The concepts of computational
induction and the fixed-point principle pose special problems to theory designers;
the main problems and possible solutions are explored.

In Appendix A, an extension to the Nuprl theory is given which implements
partial objects.

Chapter 2

Type theory: background

There is much to be said about type theory; here we offer a few words to put the
issues in focus. The chapter should be taken as an aid for understanding why type
theories are put together as they are: some important principles of type theories
are discussed, and the Nuprl type theory is looked at in more detail, helping to
illustrate how type theory may be used to actually do mathematics.

2.1 Type systems and type theories

A type system is a formal system for assigning types to computational expressions.
The typed A-calculus (TLC), Godel’s functionals of finite type, and the second-
order A-calculus (A\?) [Gir71, Rey74] are all type systems. One fact that serves to
distinguish type systems from typed programming languages is that only converging
computations are typed in a type system. Intuitionistic type theories (called type
theories for short) are particularly rich type systems that can serve as a logical basis
for doing mathematics, much as can set theory or category theory. Some examples
of type theories are Martin-Lof’s theories [ML73, ML82, ML80], the Nuprl theory
[CAB*86], Stenlund’s Theory of Species (TS) [Ste72], the Calculus of Constructions
(CC) [CH85, CH88|, and Feferman’s theory Ty [Fef75] and its successor PX [HN87].
Some other theories of historical interest are AUTOMATH [dB70, dB80] and Scott’s
theory of constructive validity [Sco70).

Martin-Lof has written extensively on how type theory is a foundation for doing
mathematics [ML80, ML82, ML83|, and the approach taken here owes much to his
views. Thus, hereafter the expression “type theory” generally refers to a theory

4

2.2 Principles of type theory 5

interpreted in the style advocated by Martin-L6f. Nuprl is a Martin-Lof-style type
theory. TS, CC, and PX are not Martin-Lof-style theories, but many of the concepts
of this thesis have analogues in them. Some of the concepts may also be applicable
to more basic type systems.

2.2 Principles of type theory

A type theory has as its language a collection of ezpressions. Some of these ex-
pressions represent types, others computations; types are collections of expressions.
Assertions (called judgements by Martin-Lof) express the truths of type theory; the
statement a € A asserts that @ inhabits (or, is a member of) the type A. Other
forms of assertion are possible. The rules characterize the meaning of the assertions;
however, the collection of rules is not to be viewed as a formal system, for more
rules may be added at some future date.

There are some general features of type theories that are worthy of study. Here
we consider the possibilities for types and notions of equality, review the principle
whereby propositions may be represented as types, and mention some of the different
ways type theory may be interpreted. Many of these principles also apply to type
systems.

2.2.1 Types

The expressiveness of type theory is largely due to the diversity of types that are
definable. Here we survey the types used in a range of theories.

Atomic data types

N is a type of natural numbers; there could instead be a type int of integers. Num-
bers may be represented as 0,1,2,. .., or as 0, .5(0), S(5(0)),.... There can be finite
types 0,1, 2... of zero, one, two, ... elements. It may be sensible to have a type E
of all expressions.

Atomic propositional types

These types represent atomic propositions via the principle of propositions as types
(discussed in section 2.2.3). In Nuprl, ¢ = b in A is a type which represents the

6 Type theory: background

assertion a = b € A. Some theories such as CC have no need for these types; others,
such as the theory defined in chapter 3, have many atomic propositional types.

Functions

The type A — B is the space of all functions from A to B. The function space
may be generalized to a dependent function space z:A — B (z may occur freely in
B): the range type B may depend on the value the function was applied on. These
types are also called II-types. An informal example is

n

fenN—->Nx...xN.

f(m) is an m-ary tuple of natural numbers.

Products

The type A X B is the product of types A and B; its members are pairs (a, b), where
a € A and b € B. The product type may be generalized to a dependent product
z:A x B: the type B depends on the inhabitant of the type A. Such types are also
known as X-types. This introduces a left-to-right dependency in the product: first
we find an element a € A, and then we find b € Bla/z]' to give (a,b) € z:A x B.

Unions

The type A+ B is the disjoint union of types A and B. The members of the type are
injected into the right or left side: inl(a) € A+ B implies a € A, and inr(b) € A+ B
implies b € B.

Subtypes

{z:A | P;} denotes those elements of A which have property P. Since P can be an
arbitrary proposition, this gives a rich notion of subtype.

lthis denotes substituting free occurrences of z in B with a

2.2 Principles of type theory 7

Recursive and infinite types

rec(t.A;) denotes the type of least membership which is a solution to the type equa-
tion ¢t = A,, provided a solution exists. Many more type structures are expressible in
the presence of this constructor. Lists of elements of some type B are expressed as
rec(t.1+ B x t); constructive ordinals may be expressed by the type rec(t.1+ N —t).
The W-type of CMCP may be expressed by the recursive type rec(t.z:A x B — t).

inf(t.A;) denotes the greatest type which is a solution to the type equation
t = A;. For instance, inf(t.N X t) represents a stream of natural numbers. Recursive
and infinite types for type theory have been developed by Mendler [Men87, CM85,
MPC86]; PX also has recursive types [HN87].

Large types

Large types have types as inhabitants. In Nuprl and CMCP there is an infinite
hierarchy of large types U;, Us,,...; U; has as members all of those types closed
under the type constructors of the sort like those mentioned above. U, is then
constructed by closing over all of these types plus the large type U;. In this fashion
a hierarchy is constructed. This hierarchy is predicative because new objects are
always defined in terms of existing objects. In CC and TS, there are impredicative
large types. In CC, there are two large types Prop and Type, with Prop € Type.
Prop is impredicative: X:Prop — X € Prop, so types in Prop may quantify over
Prop itself. Because of this, it is impossible to inductively define those types that
are in Prop.

2.2.2 Equality

Two notions of equality found in type theories are worth contrasting. The types
may come with a notion of equality on their inhabitants, and there may be some
global notion of equality of computations.

In Nuprl and CMCP, to understand what a type is means not only to know
its inhabitants, but also to know when two inhabitants are equal. The assertion
a € A is replaced with a partial equivalence relation? a = a’ € A, meaning a and o’
are equal members of the type A. For example, function equality is defined to be
extensional equality: given two functions f, f' € A — B,

f=f€A—Bif (f(a) = f'(a) € B for all a € A).

2Partial equivalence relations are symmetric and transitive, but not necessarily reflexive.

