Nuprl Lemma : nequal_wf

[A:Type]. ∀[x,y:A].  (x ≠ y ∈ A  ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: nequal: a ≠ b ∈  member: t ∈ T universe: Type
Definitions unfolded in proof :  nequal: a ≠ b ∈  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  equal_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[x,y:A].    (x  \mneq{}  y  \mmember{}  A    \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_08_12
Last ObjectModification: 2016_01_06-PM-05_27_41

Theory : core_2


Home Index