### Nuprl Lemma : int_formulaco_size_wf

`∀[p:int_formulaco()]. (int_formulaco_size(p) ∈ partial(ℕ))`

Proof

Definitions occuring in Statement :  int_formulaco_size: `int_formulaco_size(p)` int_formulaco: `int_formulaco()` partial: `partial(T)` nat: `ℕ` uall: `∀[x:A]. B[x]` member: `t ∈ T`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` nat: `ℕ` so_lambda: `λ2x.t[x]` so_apply: `x[s]` all: `∀x:A. B[x]` implies: `P `` Q` bool: `𝔹` unit: `Unit` it: `⋅` btrue: `tt` ifthenelse: `if b then t else f fi ` uiff: `uiff(P;Q)` and: `P ∧ Q` bfalse: `ff` exists: `∃x:A. B[x]` prop: `ℙ` or: `P ∨ Q` sq_type: `SQType(T)` guard: `{T}` bnot: `¬bb` assert: `↑b` false: `False` continuous-monotone: `ContinuousMonotone(T.F[T])` type-monotone: `Monotone(T.F[T])` subtype_rel: `A ⊆r B` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` strong-type-continuous: `Continuous+(T.F[T])` type-continuous: `Continuous(T.F[T])` int_formulaco: `int_formulaco()` eq_atom: `x =a y` le: `A ≤ B` less_than': `less_than'(a;b)` not: `¬A` pi1: `fst(t)` pi2: `snd(t)` int_formulaco_size: `int_formulaco_size(p)`
Lemmas referenced :  fix_wf_corec-partial1 nat_wf set-value-type le_wf int-value-type nat-mono eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom int_term_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom subtype_rel_product subtype_rel_self subtype_rel_wf strong-continuous-depproduct continuous-constant strong-continuous-product continuous-id subtype_rel_weakening atom_subtype_base false_wf inclusion-partial add-wf-partial-nat partial_wf int_formulaco_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality productEquality atomEquality tokenEquality lambdaFormation unionElimination equalityElimination productElimination because_Cache equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination voidEquality universeEquality independent_pairFormation axiomEquality isect_memberEquality isectEquality applyEquality functionExtensionality functionEquality dependent_set_memberEquality

Latex:
\mforall{}[p:int\_formulaco()].  (int\_formulaco\_size(p)  \mmember{}  partial(\mBbbN{}))

Date html generated: 2017_04_14-AM-08_59_49
Last ObjectModification: 2017_02_27-PM-03_43_31

Theory : omega

Home Index