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Introduction

Beginning in the early 1920’s, L.E.J. Brouwer proposed an intuitionsitic reforma-
tion of the foundations of mathematics.1 Among the key elements underlying
this reconstruction were: (1) a complete rejection of the principle of the excluded
middle, and (2) a collection of axioms culminating in what is commonly referred
to as Brouwer’s Thesis on bars. The latter arose from Brouwer’s effort to redefine
the continuum from an intuitionistic standpoint, that is, to characterize and
analyze the continuum as a constructively defined object. Brouwer’s Thesis,
which he proposed as an axiom on the nature of bars, resulted in the proof
of the Bar Theorem and its corollary, the Fan Theorem. Interestingly, most
mathematically significant consequences of the Bar Theorem can be proved using
the Fan Theorem alone [14].

The fan, or finitely branching tree of potentially unbounded depth, can
be viewed as the well-studied data structure from computer science, but it is
important to understand that in the context of the Fan Theorem, the relevant
"objects" within the tree are not the individual nodes and their hierarchical
relations to one another, but rather the paths originating from the root of the tree
and in particular, the paths of unbounded length. Such paths can be interpreted as
unbounded sequences of successive choices, which can in turn be used to define
the real numbers. Brouwer’s goal was to analyze the nature of these unbounded
paths, and, in particular, to effectively characterize them using only collections
of finite objects. Roughly speaking, the Fan Theorem states that the space of all
unbounded binary sequences, i.e. the Cantor space C, can be "covered" by a finite
set of finite sequences. In essence, this guarantees a form of compactness for C.
As van Atten writes in [15, p. 41]:

The philosophical value of the bar theorem lies both in its content –
it makes the full continuum, which had always been intractable for
constructivists, constructively manageable – and in the way its proof
fully exploits the intuitionistic conceptions of truth as experienced
truth and of proofs as mental constructions.

1Published in 1913, [6] is among Brouwer’s earlier discussions on intuitionism. Some key ideas
of interest for this paper, e.g. bar induction, were not fully developed by Brouwer until much later;
some of his later works can be found in [7]. More comprehensive information on intuitionism and
constructivism in general can be found in [16] and [12], respectively.
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This paper’s primary focus will be to discuss the Fan Theorem in a self-
contained manner, including the mathematical context of its origins, the nuances
in its various expressions, and some of its intriguingly far-reaching philosophical
implications.

1 Background

Choice Sequences

Central to Brouwer’s redefinition of the continuum is the concept of choice
sequences, which he used to construct the real numbers. In particular, he
identified each real number as an unbounded sequence of rational intervals, with
the property that each successive interval is a strict subinterval lying within the
last. While the Fan Theorem is a statement about the nature of unbounded trees,
it can equally be seen as a statement about choice sequences – this is, after all, the
original motivation behind its conception.

Define a sequence as an ordered list of natural numbers 2, some being finite in
length and some being infinitely long. A binary sequence is one whose elements
are restricted to {0, 1}. The term choice sequence is meant to denote any sequence
from the realm of all possible unbounded sequences. These include: (1) the
lawlike sequences, or those whose elements can be given by an algorithm (these
can of course be described by computable functions in the intuitive sense), (2)
the lawless or free choice sequences, each of whose generation may involve some
non-algorithmic process, and (3) "hybrid" sequences which are neither strictly
lawless nor lawlike, but can only be described as some combination of both.

While it is evident that a conceptual distinction can be made between
the lawless and lawlike sequences in terms of the process by which they are
generated, it is theoretically possible that every lawless (or hybrid) sequence
coincides at every position with some lawlike sequence. Here, an obvious
question arises: accepting the choice sequences as a mathematical construct, can
all unbounded sequences still be considered as arising from a "computable"
function (in the sense of Church and Turing, i.e. the recursive functions), or from
a constructive function as defined by Bishop? We return to this issue later.

As mathematical objects, the choice sequences in general must be thought of as
perpetually growing and forever incomplete: at any given point in time, we can
only grasp a choice sequence by its hitherto known initial segment. On the other
hand, each finite sequence can be thought of as the initial segment of infinitely
many choice sequences, each yet to be further determined in the future. It is in

2More generally speaking, the objects permitted in the sequence can come from any collection
for which there exists a bijection from the natural numbers to that collection. Thus there is no loss
of generality in dealing only with unbounded sequences of natural numbers when the intended
application is on sequences of rational intervals.
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this sense that every finite sequence can be thought of as "covering" an infinite
collection of associated choice sequences.

Here it is necessary to introduce some basic notation. First, let the Baire space
B denote the space of all unbounded sequences of natural numbers, and let the
Cantor space C denote the space of all unbounded binary sequences. Denote by
variables such as α, β an unbounded sequence, and by variables such as σ, τ a
finite sequence. Unless otherwise noted, let variables such as a, m, n (i.e. the
Latin lowercase lettters) stand for natural numbers. Let < a0, a1, ..., an−1 > denote
a finite sequence of length n whose ordered elements are a0, ..., an−1; <> denotes
the empty sequence of length 0.

Let · denote concatenation, so that if σ =< a0, ..., an−1 >, then σ · an =
< a0, ..., an−1, an >. If there exists some number an such that τ = σ · an, then
say that τ is an immediate descendant or extension of σ, or equivalently, σ is an
immediate ascendant of τ, both denoted by σ v τ. More generally, if there exists
a finite sequence σ′ such that τ = σ · σ′, then say that τ is a descendant of σ, or
equivalently, σ is an ascendant of τ, both denoted by σ ≺ τ. If σ, τ are such
that neither sequence is a descendant of the other, then say that σ and τ are
incompatible.

Let α(i) be the ith element of α. Let αn denote the n-length initial segment
of α, i.e. αn :=< α(0), α(1), ..., α(n − 1) >. Given any finite sequence σ and any
unbounded sequence α, if there exists some number n such that αn = σ, then
say that α passes through σ, denoted α w σ. Finally, for a fixed σ and collection of
unbounded sequencesU, letU ∩ σ denote the the collection of all α ∈ U such
that α passes through σ.

Brouwer defined collections of choice sequences using the concept of a
spread. Crucially, the continuum itself (as well as B and C) can be modeled as a
spread. Broadly speaking, the elements of a given spread are determined by its
corresponding spread law, a decidable criterion which either admits or rejects
finite sequences, under the following conditions: (1) for each admitted sequence,
all of its initial segments must also be admitted, and (2) every admitted sequence
must have at least one immediate successor that is also admitted.

Notice that every spread can naturally be represented as an unbounded
tree, with each node representing an admitted finite sequence, and the root of
the tree in particular corresponding to the empty sequence.3 The unique tree
corresponding to a given spread is referred to as its underlying tree. Given a
spread, the unbounded paths4 of its underlying tree correspond exactly to the
choice sequences captured by the spread. For instance, the spread consisting of
all possible binary sequences is represented by the binary tree, and the universal
spread, i.e. the spread consisting of all possible sequences of natural numbers,
is represented by the universal tree. The former can be viewed as a constructive

3Equivalently, the admitted finite sequences can be thought of as corresponding to the finite
paths in the tree – each node can be addressed by the path leading up to it.

4As is the case for unbounded sequences, it is crucial to consider the infinitely long paths of a
tree as fundamentally incomplete objects.

3



M.Eng Project – Prof. R. Constable Crystal Cheung

definition of the space C, and the latter of the space B.
Though strictly speaking a distinction can be made between the concepts of a

spread and its underlying tree, we will frequently refer directly to the tree itself
as a collection of sequences (both finite and unbounded), sometimes conflating
the spread with its underlying tree, as is commonly done in the literature (e.g.
in [14]). It is worth emphasizing that the nodes (or finite paths) in the tree, by
which it is explicitly defined, correspond simply to finite sequences, whereas the
primary objects of interest in this case are the unbounded paths in the tree – their
admittance to the spread is implied by the collection of admitted nodes.

Now it is possible to elaborate on the aforementioned notion of "covering"
a spread of choice sequences. Say for example that T is the underlying tree of
C, i.e. T is the binary tree. We can think of its "cover" as a set B such that every
unbounded sequence represented by a path in T belongs to some collection C∩ σ,
where σ is in B. In other words, if we could constructively define B, then we
would have a collection of finite objects which, in a sense, account for all the
unbounded sequences in C.5 Such a set B can be referred to as a bar in C. We will
return to a more precise definition of bars in our discussion of Brouwer’s Thesis.

What is the significance of being able to describe the universe of all possible
choice sequences in terms of finite objects? Since such a space consists of
fundamentally incomplete objects, it is not immediately clear how the space can
be constructively defined in its totality, much less reasoned about. A primary
concern of the Fan Theorem will be to show that there always exists, in the
constructive sense, a set of finite sequences that sufficiently captures certain key
properties of all the choice sequences.

The Weak Continuity Principle for Numbers

The issue of selecting collections of choice sequences based on their inherent
properties is theoretically problematic – since any given choice sequence is always
incomplete, it is impossible to reason about the object in its entirety. For example,
say that we have the arbitrary choice sequences α and β, and we wish to determine
whether the number of 1’s in α is greater than the number of 1’s in β. Despite the
premise of the problem being simple, the answer must be undeterminable – at
any given point in time, only the initial segments of α and β are known.

In general, if any claim is to be made about a choice sequence as a whole, it
must be provable using only an initial segment of that sequence. In other words,
any property that can be proved about a collection of choice sequences must be
demonstrable using finite sequences alone. This raises the question: is it possible
for a choice sequence to have inherent properties that do not hold for any of its
initial segments?

5One preliminary "solution" might be to construct a trivial cover by taking, for example, a
binary tree of depth 1, but the true purpose here is to find a cover that sufficiently captures certain
properties of C.
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Brouwer addressed this concern by adopting WC-N, the Weak Continuity
Principle for Numbers, which in essence states that any decidable property of a
given choice sequence can be determined entirely from one of its initial segments:

∀α.∃p.A(α, p)→ ∀α.∃n.∃p.∀β.(βn = αn→ A(β, p)) (WC-N)

where α, β range over all choice sequences. That is, if A is a relation that associates
every choice sequence with some number p, then by WC-N there must exist some
number n such that for a fixed α, every β with the same n-length initial segment
as α is mapped to the same p by A. In other words, WC-N guarantees that every
total function from choice sequences to natural numbers can be computed using
only initial segments as input.

Interestingly, Brouwer himself never gave a full justification for his acceptance
of the Weak Continuity Principle [15]. It is straightforward to see that WC-N
holds for all the lawless sequences: Since α is incomplete, the proof of A(α, p)
must rely solely on some intial segment of A(α, p), in which case A(β, p) must
also hold for every lawless sequence β with the same initial segment. This line
of reasoning, however, is not valid for all choice sequences in general. Say for
example that we have a lawlike sequence α for which A(α, p) holds. We cannot
say in general that the proof of A(α, p) relies only on an initial segment of α – in
this case, every fixed position in α is predetermined by some law, so we have
access to intensional6 information about α that may not be reflected by any of
its intial segments. Thus, the justification for accepting WC-N over all choice
sequences is not immediately obvious.

One approach (as in [15]) is to consider a hesitant sequence, defined as a
choice sequence that starts out as a lawless sequence, with the provision that
at any point in time, it may permanently transition into a lawlike sequence by
imposing some restriction on all of its future positions. Of particular note is that
fact that for hesitant sequences, the intensional information can change over time.
Furthermore, for as long as the hesitant sequence remains lawless, the intensional
information has no impact on the validity of WC-N.

Now consider the relation A in WC-N. Intuitively, it is reasonable to expect that
if A(α, p) holds, then it should hold throughout the entire ongoing construction
of α – that is, we limit the scope of A to relations that are guaranteed to remain
constant throughout time. Bearing the existence of hesitant sequences in mind,
we can then argue that since intensional information is potentially unstable, the
proof of A(α, p) can never be dependent on it, and hence WC-N should hold in
general for all choice sequences.

Notice that constructively speaking, if the antecedent of WC-N is fulfilled,
then given any α we must have a way to compute the exact p such that A(α, p)

6Viewing choice sequences as functions in the most general sense, intensional information refers
to the procedure by which the sequence is generated. This is in contrast to extensional information,
which refers strictly to the function’s output at each position, irrespective of the procedure used to
generate it.
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holds; thus there must exist some constructive function f such that on any input
α, f (α) = p. Furthermore, we can assume the following about f : (1) f requires
only an initial segment of α to compute f (α), (2) f (α) is constant for every initial
segment of sufficient length to compute f (α), and (3) the question of whether or
not a given intial segment of α is of sufficient length to compute f (α) is decidable.
Denote by K0 the class of all such functions f .

This intuition gives us the following strengthening of WC-N, referred to as
the (Strong) Continuity Principle for Numbers:

∀α.∃p.A(α, p)→ ∃ f ∈ K0.∀α.A(α, f (α)) (C-N)

Note that neither WC-N nor C-N are classically valid, though it can be shown
that WC-N and CN can be generalized to arbitrary spreads, as shown in [14]. The
axioms WC-N and C-N are a relatively simple embodiment of some key issues
regarding choice sequences – these concepts reappear in Brouwer’s most studied
approach to the Fan Theorem. For a more complete discussion of the continuity
axioms, see [15] and [19].

2 Brouwer’s Thesis on Bars

First we give a more precise definition for the concept of a bar. Let U be a
collection of choice sequences as defined by some spread, e.g. the spaces C or
B. Let B be a set of finite sequences. Say that B is a bar inU if and only if, for
every sequence α in U, we have αn ∈ B for some n. Now let σ be an arbitrary
finite sequence. Say that B is a bar inU above σ (or equivalently, B bars σ in B7)
if and only if, for all α passing through σ, we have αn ∈ B for some n. That is,
B bars σ if and only if B is a bar inU ∩ σ. Note that the statement "B is a bar in
U" is equivalent to the statement "B bars <> (inU)". With respect to particular
unbounded sequences α, say that B bars α if and only if B contains some initial
segment of α.

Suppose B is a bar inU. Say that B is a monotone bar if and only if for every
finite sequence σ and number n, if σ ∈ B, then σ · n ∈ B. Say that B is an inductive
bar if and only if for every finite sequence σ, if σ · n ∈ B for all possible n, then
σ ∈ B.

Now suppose we have a set B and we are interested in whether or not B
constitutes a legitimate bar for the universal spread corresponding to B. If B is
indeed a bar in B, how can this fact be verified in general? Brouwer’s Thesis
asserts the following: If B is a bar, there must exist a canonical proof of the fact.

The canonical proof of "B is a bar inB" is outlined as follows. If B is a bar, then
there exists a proof-tree from which the statement "B bars <>" can be derived.
The proof-tree is formed from inferences of the following types:

(η-inference) σ ∈ B, therefore B bars σ.

7This will sometimes be abbreviated to "B bars σ" if the context is clear.
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(z-inference) B bars σ · n for all n, therefore B bars σ.

(ρ-inference) B bars σ, therefore B bars σ · n.

Note that if B is assumed to be monotone or decidable, then the canonical proof
does not require any ρ-inferences [14].

Brouwer took care to distinguish between any finite description of the
canonical proof-tree and the proof-tree proper, which should be regarded as a
mathematical object of potentially unbounded size [18]. For example, by ranging
over arbitrary numbers n, infinitely many ρ-inferences can be instantiated for
any fixed σ – each of these statements is integral to the proof-tree. Both the Bar
Theorem and Fan Theorem follow from Brouwer’s Thesis in the sense that their
proofs are relativized on the guaranteed existence of the canonical proof for bars.

3 A Brief Look at the Bar Theorem

We first give a brief summary of the Bar Theorem, of which the Fan Theorem is a
main corollary.

First say that a bar is well-ordered if its elements can be constructively enumer-
ated.8 Define a thin bar as a minimal bar in the sense that if B∗ is a thin bar, then
there does not exist any set B ⊂ B∗ such that B is also a bar. Note that if B∗ is a thin
bar, then for all σ, τ ∈ B∗, σ and τ must be incompatible with one another. With
these added definitions, the Bar Theorem can be stated as follows [18]:

Theorem 1 (Bar Theorem 1)
If B is a decidable bar, then there exists a set B∗ ⊆ B such that B∗ is a thin, well-ordered
bar.

While in his original proof of the Bar Theorem Brouwer did not explicitly state
that B must be decidable, Kleene later showed that this assumption is necessary
[15]. The condition that B must be decidable holds if we restrict the bars in
question to those implicitly defined by the continuity principle C-N.

To see this, suppose we have a collection U of choice sequences and an
arbitrary function f mapping every α inU to some number p. By C-N, we have
the following: (1) For every α there must exist some n such that f (α) = p can
be computed using only the initial segment αn, (2) f (β) = f (α) for all choice
sequences β such that βn = αn, and (3) For every initial segment αm such that
m < n, we can decide whether or not αm is of sufficient length to compute f (α).9

Therefore, to every such function f we can associate a decidable bar B defined
as follows: Given any finite sequence σ, decide whether or not σ is of sufficient
length to compute f (α), where α is any choice sequence of which σ is an initial
segment. If σ is of sufficient length, then let σ ∈ B, otherwise let σ < B. All the
bars that can be defined in this manner form a class of decidable bars implicated
by the assumption of C-N.

8Here, "well-ordered" is meant in the intuitionistic sense, as opposed to its classical definition.
9For all αm such that m > n, we obviously have sufficient information to compute f (α).
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Kleene’s Interpretation of the Bar Theorem

Based on a footnote mentioned by Brouwer in 1927, Kleene developed an alternate
view of the Bar Theorem that is more classically convincing in that it does not
rely on Brouwer’s Thesis [10].

Where α is an unbounded sequence, say that αn is secured with respect to a
decidable predicate A if and only if A(αm) holds for some m 6 n. If αn is the
shortest initial segment of α for which A holds (i.e. if A(αn) and yet ¬A(αm) for
all m < n), then say that αn is immediately secured. If A(αn) and we have some
m < n such that A(αm) also holds, then say that αn is past secured. Say that a finite
sequence σ is securable if for all α passing through σ, A(αn) holds for some n.

The following figure (adapted from [10, p. 49]) makes the above definitions
clear, using the unbounded binary tree as an example.

Figure 1

By inspection, it is easy to see that (1) the immediately secured nodes in Figure
1 can be identified as a thin bar in C, and (2) by taking the set of immediately
secured and securable (not past secured) nodes in Figure 1, we have a bar in C
whose elements form a tree rooted at the empty sequence. If we generalize this
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example to arbitrary selections of underlined nodes, then it will not necessarily be
the case that the set of all immediately secured and securable (not past secured)
nodes includes the empty sequence. It is intuitively clear, however, that whenever
σ · 0 and σ · 1 are both either immediately secured or securable, then it must be
the case that σ is also securable. For now, let us inductively define the set I by
taking σ ∈ I whenever (1) σ is immediately secured, or (2) σ · 0 ∈ I and σ · 1 ∈ I.

We now distinguish the two alternate notions of "securability" which form
the crux of Kleene’s observations regarding the bar theorem. First, say that a
node σ is securable in the explicit sense if and only if it fulfills our aforementioned
notion of securability, i.e. for all α such that α w σ, we are guaranteed A(αn) for
some n. Intuitively, we can think of σ as explicitly securable whenever every
possible unbounded sequence of choices beginning with σ must eventually fulfill
the property A – in Figure 1, this amounts to saying that every path passing
through σ eventually hits an underlined node.

Second, say that a node σ is securable in the inductive sense if and only if σ
belongs to the set I. As described earlier, the set I is generated by beginning with
the immediately secured nodes and inductively adding nodes in the direction
towards the root.

Given a spread such as C and an arbitrary decidable predicate A, let ΣE be
the set of nodes that are explicitly securable with respect to A, and let ΣI be the
set of nodes that are inductively securable with respect to A. Kleene’s pivotal
observation based on Brouwer’s Footnote can then be stated as the following:
for all finite sequences σ, σ ∈ ΣE if and only if σ ∈ ΣI. In other words, the two
definitions of securability are equivalent. The truth of this statement is strongly
intuitive when one considers an example such as Figure 1. Here, ΣE is precisely
the set of immediately secured and securable (not past secured) nodes, whereas ΣI
is the set generated by starting with the immediately secured nodes and adding
a node towards the root to ΣI whenever both of its immediate descendants are
in ΣI – in the figure, one can easily see that these two sets are the same. Both
classical and constructive proofs of the general equivalence can be found in [10].

Kleene notes that the Bar Theorem can simply be viewed as the implication
σ ∈ ΣE → σ ∈ ΣI. More formally, this can expressed as:

Theorem 2 (Bar Theorem 2)
If A is a decidable predicate on finite sequences, then
∀α.∃n.A(αn) → ( (∀σ.(A(σ)→ Q(σ)) ∧ ∀σ.(∀a.Q(σ · a)→ Q(σ)) ) → Q(<>) )

Note that the predicate Q in the consequent essentially captures the property of
belonging to the set of inductively securable nodes. Of course, this formulation of
the Bar Theorem follows trivially from the equivalence of ΣE and ΣI. Furthermore,
as Kleene and Vesley state in [10, p. 48]:

...Brouwer’s Footnote 7 says that securability is that property (of se-
quence numbers not past secured) which originates at the immediately
secured sequence numbers, and propagates back to the unsecured but
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securable numbers across the junctions between a sequence number...
and its immediate extensions...

This notion of "backwards propagation" is key to the principle of bar induction,
which we shall revisit after discussing the Fan Theorem.

4 The Fan Theorem

As mentioned earlier, the term fan is used to denote any finitely branching tree
of unbounded depth. That is, T is a fan if every path in T is unbounded in
length and every node in T has only a finite number of immediate descendants;
the binary fan T01 in particular is the fan where every node has exactly two
immediate descendants. In the context of choice sequences, we can define a fan
as the underlying tree T of a spread in which all the positions in a sequence are
restricted to a finite number of choices.

More formally, define a tree T as a decidable set of finite sequences of natural
numbers such that: (1) The empty sequence <> is the root of T, and (2) If τ ∈ T
and σ v τ, then σ ∈ T, i.e. T is closed under ascendants. By identifying the
finite elements of T as its nodes and taking (σ, τ) as an edge whenever σ v τ, this
definition of T can easily be identified with the usual definition of trees under
graph theory.

If T is the underlying tree of some spread, then we are guaranteed that every
path in T is unbounded in length, i.e. if σ ∈ T, then we must have τ ∈ T for some
τ w σ. Thus if T represents a spread, then the unbounded paths in T correspond
exactly to the choice sequences captured by that spread – we can view these
choice sequences as the unbounded elements of T. Say that the choice sequence
α is an element of T if and only if every initial segment of α is a node in T, i.e.
αn ∈ T for all n.

Let TU denote the universal tree whose nodes consist of all possible finite
sequences of natural numbers. It is obvious that the unbounded elements of TU
are precisely the elements of the Baire spaceB – it is in this sense that TU captures
the space of all possible unbounded sequences of natural numbers. Similarly, T01
captures the Cantor space C; T01 can be viewed as the subtree of TU consisting
exactly of the paths corresponding to the binary sequences. In general, every fan
can be viewed as a subtree of TU. For reasons that will become clear later, we
limit our initial discussion of the Fan Theorem to its application on the binary
fan.

Formulating the Fan Theorem

A preliminary, intuitive statement of the Fan Theorem can be given as follows
[18]:

Theorem 3 (General Fan Theorem 1)
If B is a bar in C, then there exists a finite set B∗ ⊆ B such that B∗ is also a bar in C.

10



M.Eng Project – Prof. R. Constable Crystal Cheung

Since B∗ is finite, it is clearly decidable. Furthermore, there must be some upper
bound N on the length of its elements. This observation gives us the following
equivalent statement:

Theorem 4 (General Fan Theorem 2)
If B is a bar in C, then ∃N.∀α ∈ T01.∃n < N.αn ∈ B.

Note that if this is to hold constructively, then there must be a method to compute
the exact N described. To see that these two statements are equivalent: given N,
define B∗ := {σ : σ ∈ B, len1th(σ) 6 N}; given B∗, let N = maxσ∈B∗(len1th(σ)).

While Theorem 3 can be viewed as a consequence of the Bar Theorem (by
which there exists a thin, well-ordered bar B∗ ⊆ B that is finite since T01 is a fan),
the following proof shows how it can be seen directly from Brouwer’s Thesis.10

Proof. Assuming Brouwer’s Thesis, there exists a canonical proof for every bar
B′ that is a bar in B. Suppose B ⊂ B′ is a bar in C. Viewing C as a subspace of B,
from the existence of a canonical proof that B′ is a bar in B, we can deduce that a
proof-tree of the following form exists11:

– The root of the proof-tree, which is the conclusion of the proof, is the
statement: "B bars <> in C".

– For every σ ∈ B, we have available the η-inference: "σ ∈ B, therefore B bars
σ in C". Since T01 is a fan, only a finite number of such η-inferences are
needed to complete the proof-tree.

– Whenever B bars both σ · 0 and σ · 1, we have a z-inference with the
conclusion: "B bars σ in C".

– Whenever we have the statement "B bars σ", we have two ρ-inferences with
the conclusions "B bars σ · 0" and "B bars σ · 1", respectively.

Note that this proof-tree proves the statement "B is a bar in C" and is a sub-tree of
the canonical proof that B′ is a bar in B. Furthermore, it requires only finitely
many η-inferences. Construct the finite set B∗ ⊆ B by defining σ ∈ B∗ if and only
if "σ ∈ B∗" appears in an η-inference of the proof-tree. Since the same proof-tree is
also sufficient for proving that B∗ bars <>, we have a proof of the statement "B∗ is
a bar in C", as desired.

�

The following variations in the expression of the Fan Theorem are useful in
exploring the impact of possible assumptions that can be made about the premises
of the theorem. We express these for now as propositions and discuss the logical
relations between them.

10This proof is adapted from [18].
11Note that for every conclusion "B′ bars σ in B" in the canonical proof, where σ is a finite binary

sequence, we have a fortiori "B bars σ in C".
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Proposition 5 (FAND)
∀σ ∈ T01.(A(σ) ∨ ¬A(σ)) ∧ ∀α ∈ T01.∃n.A(αn)→ ∃N.∀α ∈ T01.∃n 6 N.A(αn)

FanD says that if: (1) A is a decidable property with respect to all finite binary
sequences, and (2) every unbounded binary sequence has some initial segment
satisfying A, then we can conclude that there is a uniform upper bound N on the
length of the initial segments posited by (2). That is, for every α in T01, we have
αn for some number n 6 N.

Note the relation of FAND to Theorem 4. Assuming that FAND holds, we
can define a bar B in C by taking a subset of the finite sequences posited by the
assumption ∀α ∈ T01.∃n.A(αn), specifically the set {σ : A(σ) ∧ (∀σ′ ≺ σ.¬A(σ))}.
In fact, such a set can be identifed with the thin bar B∗ guaranteed by Theorem 3.

It is also straightforward to see that FAND follows from Kleene’s version of
the Bar Theorem. Intuitively, any bar B in C will be formed by some collection of
immediately secured and securable (past secured) nodes with respect to some
decidable property. In terms of the bar, all past secured nodes are redundant
– by removing all such nodes we obtain a thin bar B′ ⊆ B. Furthermore,
since T01 is a fan, B′ can not be infinite in size without eventually having
redundant nodes. We must therefore conclude that B′ is finite, i.e. there exists
an upper bound on the length of sequences in B′. Kleene’s proof that the
explicit and inductive definitions of securability are equivalent thus provides
us with a method of proving FAND that does not rely on Brouwer’s Thesis
– moreover, Kleene’s version of the proof is both classically and constructively true.

The following strengthening of FanD omits the assumption that A is de-
cidable for all nodes in T01, requiring only that A holds for some initial segment
of every unbounded sequence:

Proposition 6 (FAN)
∀α ∈ T01.∃n.A(αn)→ ∃N.∀α ∈ T01.∃n 6 N.A(αn)

This version is close in spirit to Brouwer’s original description of the Fan Theorem,
in which the property A is instead viewed as a relation associating each initial
segment with some natural number [15]:

∀α ∈ T01.∃n.A(αn, p)→ ∃N.∀α ∈ T01.∃n 6 N.A(αn, p)

Now suppose that FAN holds. If we assume the continuity principle C-N, then
whenever we can determine A(α, p) based only on αn, we can conclude that
A(β, p) holds for all β that pass through αn. Furthermore, by FAN we have that if
A(α, p) can be determined for every α in T01 based on some initial segment, then
there must be a universal upper bound N on the minimum lengths of the initial
segments needed to compute A(α, p) for any α. Thus by accepting C-N, we can
generalize FAN to the following statement:

Proposition 7 (FAN∗)
∀α ∈ T01.∃p.A(α, p)→ ∃N.∀α ∈ T01.∃p.∀β w αN.A(β, p)

12
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It can be shown that FAN∗ is not classically valid – intuitively, this result is
unsurprising since C-N itself is not classically valid. Note also that in the
presence of C-N, FAND, FAN, and FAN∗ are all equivalent [14].

Up until now we have focused on binary fans in particular. As it turns
out, there is no loss of generality in limiting the discussion of the Fan Theorem to
binary fans only. The following result shows that the Fan Theorem, as stated for
arbitrary fans, can always be reduced to a statement about binary fans.

Proposition 8
Every fan T can be homeomorphically mapped to a subfan T′01 of the binary fan T01.

That is, there exists a (topologically) continuous function Φ such that: (1) Φ forms
a bijection between the paths in T and the paths in T′01, and (2) Φ is invertible
[4]. The idea is to uniquely encode every unbounded path α in T as the binary
sequence

1α(0)+1, 0, 1α(1)+1, 0, 1α(2)+1, 0, 1α(3)+1, 0, ...

where 1n denotes a sequence of n consecutive 1’s. This reversible encoding
process is then taken to be the mapping Φ.

Given any arbitrary fan T, we can effectively compute its unique corresponding
binary subfan T′01. It can be shown that if FAND (or FAN, FAN∗, respectively) is
valid for T01, then it must also hold for T′01, and thus we can conclude that FAND,
FAN, and FAN∗ hold for all fans in general [14].

Relating the Fan Theorem to the Classical König’s Lemma

In its application on trees, König’s (Infinity) Lemma, a classical result from graph
theory, states that if T is a finitely branching tree with infinitely many nodes, then
there exists at least one unbounded path in T. Classically, FAN is equivalent to
König’s Lemma by way of contraposition – it is possible to equate FAN with the
statement, "If T is a finitely branching tree and every branch of T is finite, then T
must have a finite number of nodes".

To see this interpretation of FAN, consider the following. Let TB be a finitely
branching binary tree in which every branch is finite. Let T′01 be a subfan of the
binary fan such that for every unbounded sequence α, α ∈ T′01 if and only if α
passes through some finite sequence σ ∈ TB. Define the property A so that for
any σ, A(σ) holds if and only if σ < TB. By FAN, there is an upper bound on the
length of the paths in TB. In this sense, FAN can be viewed as asserting that the
number of nodes in TB is finite.

That FAN and König’s Lemma are contrapositives of one another can also be
seen from the following expression of the latter:

Theorem 9 (KL)
If T is a fan, then ∀N.∃α ∈ T.∀n 6 N.¬A(αn)→ ∃α ∈ T.∀n.¬A(αn)

13
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For every bound N, define BN := {σ : (len1th(σ) 6 N) ∧ A(σ) ∧ (∀σ′ ≺ σ.¬A(σ))}.
With respect to fans in particular, KL says that if for every N there is some α ∈ T
such that BN does not bar α, then we can conclude that there exists at least one
particular path α0 in T such that A does not hold for any initial segment of α0, i.e.
α0 is not barred by any BN.

The following is a classical proof of KL12:

Proof. Let T be an arbitrary fan and fix the property A. For every number N,
define BN as above. Let B :=

⋃
N∈N BN, and note that for any finite sequence σ of

length N or less such that σ < BN, we can conclude that σ < B.
Assume the antecedent of KL, so that for every N, there is some α ∈ T such

that BN does not bar α. In particular, for every N, there is at least one finite
sequence σ of length N such that we have: (1) ¬A(σ), and (2) ¬A(τ) for all τ ≺ σ.
Since there may be more than one such σ for any fixed N, denote by ΣN the finite
set of all N-length σ satisfying criteria (1) and (2).13 By definition, if σ ∈ ΣN, then
σ < BN.

Fix N and ΣN. Now consider the set ΣN+1: for all σ′ ∈ ΣN+1, it must be the
case that σ′ extends some σ ∈ ΣN, otherwise criteria (2) would not hold for σ′. In
general, for any arbitrary ΣN and ΣN′ such that N′ > N, there must exist σ ∈ ΣN
and σ′ ∈ ΣN′ such that σ ≺ σ′.

Thus we can classically define a set K as the set of all sequences σ such that
for any arbitrary length ` > len1th(σ), there exists some `-length sequence σ′ ∈ Σ`
that is a descendant σ. Clearly, K is a subset of B. From the assumed antecedent
of KL, we must have <>∈ K, since <> is the only node at depth 0. For every
σ ∈ K, let Sσ denote its finite set of immediate descendants. By definition, if σ ∈ K,
then σ′ ∈ K for some σ′ ∈ Sσ.

Therefore, beginning with α0(0) =<>, there must exist a particular unbounded
sequence α0 with the property that for any choice of n, αn ∈ K and hence αn < B.
Such an α0 fulfills the consequent, ∃α ∈ T.∀n.¬A(αn), as desired. �

From the classical proof of KL, it follows that FAN is also classically true. Since
every decidable bar can be viewed as arising from some decidable property of all
finite sequences, KL essentially describes the conditions under which a given
decidable property can not be successfully used to define a bar. Note however
that the classical proof of KL does not hold constructively – despite showing
that a particular α0 must exist for which A is never satisfied, the proof does not
provide a constructive method for exhibiting this exact sequence.14

12This proof is loosely adapted from [9].
13Since T is a fan, the number of nodes at any fixed depth N is finite, thus for any N, ΣN must be

finite.
14Based on the classical proof, one way to encounter the posited α0 is to perform a depth-first

search of T, backtracking whenever we encounter a node in B – this method will of course fail in
practice to actually identify α0, since at any given point in the search there is no way to distinguish
α0 from a path that will eventually "hit B" at some depth in the future.

14
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If we accept the principle of the excluded middle, (p ∨ ¬p), as in classi-
cal logic, then for any property A of finite sequences σ, (A(σ) ∨ ¬A(σ)) always
holds. Thus classically speaking, there is no meaningful distinction between the
forms of the Fan Theorem FAND and FAN, so FAND must also be classically true.
It can be shown directly that FAND and König’s Lemma (in its general form as
applied to trees) are classically equivalent15:

Proof. (König’s Lemma⇒ FAND)
Let T be an arbitrary fan. Assume that we have ∀α ∈ T.∃n.A(αn). Classically,

we can take for granted that ∀σ ∈ T.(A(σ) ∨ ¬A(σ)). It follows that the tree
TA := {σ ∈ T : ∀τ � σ.¬A(τ)} has only finite paths. Intuitively, TA is the maximal
subtree of T such that: (1) TA and T share the same root, and (2) every node of
σ ∈ TA satisfies ¬A(σ).

Suppose by contradiction that the consequent of FAND does not hold, i.e. we
have ¬(∃N.∀α ∈ T.∃n 6 N.A(αn)), which is classically equivalent to the statement:
∀N.∃α.∀n 6 N.¬A(αn). This means that there is no upper bound on the length
of paths in TA – for every number n we can find some (finite) path in TB of
length n, and thus there is no upper bound on the number of nodes in TA. By
König’s Lemma, there exists an unbounded path in TA, i.e. ∃α.∀n.¬A(αn), which
contradicts our original assumption.

Therefore it must be the case that ∃N.∀α ∈ T.∃n 6 N.A(αn), so FAND holds as
desired. �

Proof. (FAND⇒ König’s Lemma)
Classically, FAND, FAN, and the contrapositive of FAN (i.e. KL) are equivalent.
We assume KL. Let TA be a finitely branching tree with an unbounded number
of nodes. Let T be a fan such that every (unbounded) path in T passes through
some finite path in TA. Define the property A so that A(σ) holds if and only if
σ ∈ T but σ < TA. In particular, for every σ ∈ T, ¬A(σ) holds if and only if σ ∈ TA.

Notice that there must exist paths of arbitrary length in TA. Thus for any choice
of N, we have ∃α ∈ T.∀n 6 N.¬A(αn). By KL, there must exist an unbounded
path α ∈ T such that ¬A holds for every initial segment of α, so by definition
there must exist some unbounded branch in TA. �

It is apparent that classically speaking, FAND, FAN, KL, and the general König’s
Lemma as applied to trees are all equivalent. On the other hand, from the
intuitionistic perspective, that A is a decidable property for every finite sequence
cannot be taken for granted. Therefore FAND (rather than FAN) should be viewed
as the intuitionistic counterpart to König’s Lemma. Interestingly, Brouwer’s
original proof of the Fan Theorem in 1924 predates the first appearance of König’s
Lemma [15].

15The proof of the forward implication (König’s Lemma⇒ FAND) is adapted from [14]
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5 Kleene’s Counterexample to the Fan Theorem

From the preceding formulations of the Fan Theorem, it was implied that the
statements "B is a bar in C" and "∀α ∈ T01.∃n.A(αn)" are equivalent. It turns out
that the precise interpretation of the intuitive statement "B is a bar" has a significant
impact on whether or not the Fan Theorem can be proved constructively. In
particular, Kleene showed via counterexample that if all the unbounded sequences
of natural numbers are viewed as arising from recursive functions (or constructive
functions as defined by Bishop), then the Fan Theorem is not constructively true.

To see this, we first define Kleene’s T-predicate. Say that a function is "com-
putable (by algorithm)" or "algorithmic" if it belongs to the class of recursive
functions. The term "algorithmic" is by necessity informal; intuitively, such a func-
tion can be viewed as fully describable by some finite specification. Formally, the
class of (partial) recursive functions is equivalent to: (1) the Turing-computable
functions, (2) the class of functions described by Church’s lambda calculus, and
(3) the formal characterization of computable functions according to Kleene’s T-
predicate [11]. Furthermore, Bishop’s constructive definition of functions, which
hinges on the existence of a "finite routine" mapping every input to its output,
can intuitively be viewed as describing the same class of recursive functions [5].

Note that there exists an algorithmic mapping that assigns a unique code
number x to each intensional instruction set or "program" used to compute some
recursive function.16 These code numbers are referred to as the Gödel numbers of
the programs. Given any number x, denote by Px the program whose assigned
Gödel number is x, and denote by ϕx the partial function computed by Px.

Where A is any predicate or relation, let χA denote the characteristic function
of A.17 Say that A is algorithmic if and only if χA is algorithmic. Kleene’s
T-predicate is an algorithmic predicate defined as follows: T(x, y, z) holds if and
only if (1) x is the Gödel number corresponding to a program Px that computes
some recursive function ϕx, (2) y is a number accepted as input by Px, and (3)
z is the Gödel number corresponding to a program that simulates Px on input
y and successfully terminates. In other words, T(x, y, z) holds exactly when
ϕx(y) is computable. Define the algorithmic function U such that if T(x, y, z)
holds, then U(z) = ϕx(y). In the literature, U is called the result-extracting function
corresponding to T [14].

Say that an unbounded sequence α is recursive if and only if there exists a total
recursive function ϕα such that for all n, α(n) = ϕ(n). Kleene’s counterexample to
the Fan Theorem can now be expressed as follows [14]:

Theorem 10 (Kleene’s Counterexample to FAND)
Suppose that every unbounded sequence α is recursive. There exists a decidable pred-

16In general, each recursive function may be given by more than one program. The existence of
such a mapping implies (classically) that the recursive functions are denumerable [11].

17I.e. If A is a predicate, for any input x: χA(x) = 1 if and only if A(x) holds, otherwise χA(x) = 0.
Similarly, if A is a relation, for any input N: χA(x, y) = 1 if and only if (x, y) ∈ A, otherwise
χA(x, y) = 0.
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icate R such that ∀σ, τ ∈ T01.(R(σ · τ) → R(σ)), and: (1) ∀α.∃n.¬R(αn), and (2)
∀n.∃σ.((len1th(σ) = n) ∧ R(σ)).

Proof. 18 Let T be Kleene’s T-predicate and define the predicate R such that for
any n:

R(αn) := ∀m < n.((∃u < n.p01) ∧ (∃u < n.p10)),
where p01 := T(m,m,u) ∧ (U(u) = 0)→ α(m) = 1
and p10 := T(m,m,u) ∧ (U(u) = 1)→ α(m) = 0.

Intuitively, the proposition p01 says that if ϕm(m) = 0, then α(m) = 1; p10 says that
if ϕm(m) = 1, then α(m) = 0. Thus R(αn) holds exactly when every position m < n
in αn fulfills the properties: (i) α(m) , ϕm(m), and (ii) ϕm(m) can be computed by
a program whose Gödel number is less than n.

(2) Given any n, choose the (recursive) unbounded binary sequence α
such that α(m) = 1 if and only if: (i) m < n, and (ii) for some u < n, we have
T(m,m,u) ∧ U(u) = 0. Thus ∀n.∃σ.((len1th(σ)) = n ∧ R(σ)) holds.

(1) Let ϕm be a function corresponding to α and suppose we have
T(m,m,u). Suppose that we have R(α(u + m + 1)). Since α is binary, either
U(u) = 0 or U(u) = 1. But if U(u) = 0, then ∃v < u + m + 1.(T(m,m, v) ∧ Uv = 0).
Thus according to the program Pv, we have α(m) = 1, i.e. ϕm(m) = 1, which
contradicts our assumption that T(m,m,u). If U(u) = 1, we reach an analogous
contradiction. Therefore it must be the case that ¬R(α(u + m + 1)), and in general
we have ∀α.∃n.¬R(αn), as desired. �

Notice that the proof of Kleene’s counterexample utilizes a contradiction
arising from T(m,m,u), i.e. the situation when the program Pm receives as input
its own Gödel number. In a sense, we can view this proof as a topological form
of diagonalization.

An immediate consequence of Theorem 10 is that FAND does not hold if
every α in T01 (and a fortiori, if every unbounded sequence of natural numbers)
can be given by a total recursive function. Define the decidable predicate A such
that for all finite binary sequences σ, A(σ)↔ ¬R(σ). From property (1) of R, we
have ∀α.∃n.A(αn), and yet by (2), there are finite sequences of arbitrary length for
which A is not satisfied. Thus if we make the assumption that every sequence α is
recursive, then there is no universal upper bound N such that ∀α.∃n < N.A(αn).

An Alternate Interpretation of "B is a Bar"

One possible solution to the issues that arise from equating the intuitive statement
"B is a bar" with the formulation "∀α.∃n.A(αn)" is to define the former without
referencing any unbounded sequences at all, thereby sidestepping the issue of

18This version of the proof is from [14].
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how the quantifier ”∀α” should be interpreted in the antecedent of FAND, FAN,
and FAN∗. This approach is discussed explicitly in [9] and implicitly in [14].

Let B be a set of finite binary sequences. Define the predicate B | σ inductively
as follows: (1) if σ ∈ B, then B | σ, and (2) if B | σ · 0 and B | σ · 1, then B | σ.
The idea then is to say that "B is a bar" if and only if a proof-tree for B |<> can
be constructed, using statements of type (1) as starting points. As discussed in
the proof of Theorem 3, if B is a bar (in the intuitive sense), then there exists a
canonical proof of the fact – by inspection it is evident that the proof-tree for
B |<> can be identified with a finite rooted sub-tree of the canonical proof-tree.
In particular, the terminal nodes of the proof-tree for B |<> can be identified with
the statements in the canonical proof of the form "σ ∈ B". Notice also that the
proof-tree of B |<> can be viewed as a well-ordered or well-founded inductive binary
tree as defined in [14]. Moreover, as we observed earlier, this proof-tree is finite
since B bars a fan. Hence, if we interpret the Fan Theorem as:

Theorem 11 (Inductive Fan Theorem)
B |<> → ∃N.∀α ∈ T01.∃n < N.αn ∈ B,

then N can easily be found by determining the depth of the proof-tree for B |<>.
This expression of the Fan Theorem is thus constructively true. Crucially, the
definition of "B is a bar" in this case is based on a predicate defined solely from
finite sequences. There is again no loss of generality in considering the binary
fan in particular rather than arbitrary fans.

This interpretation of what it means for a set to constitute a bar informs the
concept of bar induction, an induction principle of practical use for proving certain
properties of unbounded sequences [14]:

Proposition 12 (Decidable Bar Induction)

∀α.∃n.P(αn) ∧ ∀σ.(P(σ) ∨ ¬P(σ)) ∧ ∀σ.(P(σ)→ Q(σ))
∧ ∀σ.(∀a.Q(σ · a)→ Q(σ)) → Q(<>)

That is, a property Q can be shown to hold for the empty sequence <> if the
following four conditions are fulfilled: (1) P is a decidable property for all finite
sequences σ (2) Every unbounded sequence has some initial segment that satisfies
P, (3) For any σ, Q holds if P holds, and (4) Q holds for σ if Q holds for every
immediate descendant of σ. Practically speaking, whenever Q(<>) is a predicate
that holds if and only if Q holds for every unbounded sequence, bar induction
can be used as a method for constructively proving that certain properties hold
for all the choice sequences captured by the underlying tree of a spread.

Notice the close resemblance between decidable bar induction and Kleene’s
version of the Bar Theorem: the latter is a statement of the form p → q, while
the former takes the form p ∧ q. Kleene’s proof of the equivalence between the
explicit and inductive definitions of node securability thus serves additionally as
a proof of the bar induction schema.
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The following is a generalized version of bar induction in which we as-
sume that P is monotone rather than decidable and conclude that P itself holds at
the root:

Proposition 13 (Monotone Bar Induction)

∀α.∃n.P(αn) ∧ ∀στ.(P(σ)→ P(σ · τ)) ∧ ∀σ.(∀a.P(σ · a)→ P(σ)) → P(<>)

It can be shown that in the presence of C-N, these two forms of bar induction are
equivalent [14].

Far from being an axiom schema of purely theoretical interest, the prac-
tical relevance of bar induction has been shown by the role it plays in constructive
type theories such as Nuprl19 – a recent description of the realizer for strong bar
induction in Nuprl, inspired by Kleene’s proof of bar induction, can be found in
[4]. This version of bar induction is strong in the sense that while the bar must be
decidable, the spread of interest itself need not be. From this, we can see that bar
induction is implementable in the most practical sense of the word – it is possible
to (constructively) define a program for drawing conclusions of the form given
by the bar induction principle.

6 On the Incompatibility of the Fan Theorem and
Church’s Thesis

Informally, Church’s Thesis20 refers to the notion that the class of recursive functions
sufficiently captures the the informal notion of what it means for a function to be
"algorithmic". Since "algorithm" is an intuitive concept rather than a formal one,
it is not possible to prove or disprove Church’s Thesis – it is largely accepted in
computer science, and in particular in computability theory, due to a combination
of empirical evidence and the fact that the acceptance of Church’s Thesis as an
axiom has yielded many fruitful outcomes [11]. The constructive version of
Church’s Thesis, which is a strengthening of the aforementioned concept, is as
follows21:

∀α.∃x.∀y.∃z.(T(x, y, z) ∧ U(z) = α(y)) (CT)

That is, CT makes explicit the idea that the lawlike sequences can be identified
with the recursive functions. Moreover, the quantifier∀α implies that every infinite
sequence of natural numbers can be given by some total recursive function. An

19Nuprl is currently the only fully implemented intuitionistic foundational theory, both for
mathematics and computer science. Further information on Nuprl can be found in [1] and [8].

20i.e. the Church-Turing Thesis from computability theory
21In the rest of this paper, the term "Church’s Thesis" will generally be used to denote the

constructive version.
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intriguing consequence of Kleene’s Theorem 10 is the revelation of the following
fact: the Fan Theorem (FAND) is incompatible with Church’s Thesis (CT).

If FAND holds for the space of all unbounded sequences in a fan, yet fails to
hold for recursive sequences in particular, then there must exist paths in the fan
that do not correspond to any total recursive function. In retrospect, this concept
can be seen as a classical justification of Brouwer’s use of choice sequences
to define the real numbers: since the real numbers are non-denumerable, the
number of choice sequences available must be greater than the number of total
recursive functions, of which there are (classically) countably many.

Nevertheless, the conflict between the Fan Therorem and CT brings to light a
caveat regarding the intuitionistic conception of unbounded sequences – certain
significant properties of choice sequences cannot be assumed in the presence
of CT. This is perhaps surprising, considering that CT (viewed as applying to
the lawlike sequences only) has been shown to be compatible with most other
aspects of intuitionism [14].

Essentially, proofs that are relativized on CT are as a whole incompatible
with the Fan Theorem, which is itself relavitized on Brouwer’s Thesis – this
alludes to a deep incommensurability between the two systems of thought. Not
only does this conflict apply to the way in which unbounded sequences are
visualized, but it also raises the question of whether or not the real numbers can
be appropriately represented by total recursive functions. In fact, in Bishop’s
seminal contribution to constructive mathematics (published in 1967), he rejected
the concept of choice sequences in general [2]. It was later shown that Bishop’s
development of constuctivism is compatible with CT [2], though without the
lawless sequences, his focus had to shift from describing the continuum in its
totality towards defining individual real numbers [15].

7 The Continuum as a Fan

Brouwer’s original motivation for developing the Fan Theorem was to achieve,
intuitionistically, the result that the continuum is uniformly continuous. By
modeling the real numbers as unbounded sequences of nested rational intervals,
Brouwer was able to avoid describing the continuum as a collection of discrete
objects, and as the Fan Theorem would show, the property of uniform continuity
could be intuitionistically derived. As van Atten describes in [15, p. 33-34]:

Brouwer’s achievement is to have found a way to analyze the contin-
uum that does not let it fall apart into discrete elements (as extensional
equality of choice sequences is not decidable), and is constructive to
boot.

The issue of showing that the continuum is uniformly continuous reduces
to the issue of showing this property for reals in the interval [0, 1], since the
same argument can be applied to the real interval between any two consecutive
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numbers. In particular, the goal is to show that every total function on [0, 1] is
(uniformly) continuous.22

First define a real number as an unbounded sequence of rational intervals
I0, I1, I2, ..., such that every interval has the form[ a

2k+1
,

a + 2
2k+1

]
where 2 6 a + 2 6 2k+1. Note the following observations: (1) Every such interval
lies within the interval [0 ,1], (2) Every interval I j can be uniquely associated with
a pair of numbers <a, k>, and thus intervals of this form are denumerable, and
(3) For a fixed interval I, there are only finitely many intervals I j such that I j is a
proper subinterval of I.

Now define the spread J by taking as its spread law the condition that if
< a0, a1, ..., an > is an admitted sequence, then its extension < a0, a1, ..., an, an+1 >
is admitted if and only if Ian+1 is a proper subinterval of Ian . Let TJ denote
the underlying tree of J; from observation (3), TJ is a fan, and thus there is a
corresponding subfan of the binary fan that also represents J. It can be shown that
every unbounded path in TJ represents a real number in [0, 1], and conversely,
every real number in [0,1] corresponds to some unbounded path in TJ [15].

Therefore, the spread J can be viewed as a sufficient representation of the
continuum [0, 1]. From this, it is clear that the Fan Theorem can be invoked to
show that if uniform continuity holds over certain finite sequences of J (i.e. those
that are barred), then the same property must hold over all the reals in [0, 1].

Thus by applying the Fan Theorem to the fan TJ, Brouwer achieved the
following results [15]:

Theorem 14 (Uniform Continuity Theorem)
∀ε.∃δ.∀x1x2.( | x1 − x2 |< δ → | f (x1) − f (x2) |< ε ), where δ, ε are positive reals and
x1, x2 ∈ [0, 1]

which implies the corollary:

Theorem 15 (Continuity Theorem)
∀ε.∀x1.∃δ.∀x2.(| x1 − x2 |< δ → | f (x1) − f (x2) |< ε), where δ, ε are positive reals and
x1, x2 ∈ [0, 1]

The first theorem says that every total function from the interval [0, 1] to R is
uniformly 23 continuous, while the second, weaker statement asserts only that
the functions are continuous.

22The following description is adapted from [15].
23Here, the term "uniform" can be seen as applying to the condition that there exists a single δ

such that (| x1 − x2 |< δ → | f (x1) − f (x2) |< ε) holds for any arbitrary x1, x2.
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8 Discussion

In its historical context, one of the most important aspects of the Fan Theorem
is the role that it played in allowing Brouwer to show that the intuitionistically
conceived continuum is not only continuous, but uniformly so. There are other
notions of computational and philosophical interest that can be gleaned from the
Fan Theorem. In particular, the Fan Theorem highlights the dichotomy between a
deterministic and non-deterministic conception of "choice". To accept the lawless
sequence as a mathematical construct extensionally distinct from the lawless
sequence is to accept that in the universe of unbounded sequential choices, there
exist successions of choices that cannot be described by any pre-determined law
or "algorithm". This is a key distinction and the underlying souce of conflict
between the Fan Theorem and Church’s Thesis. In a sense, the Fan Theorem
embodies a crossroads with respect to constructive analysis. Kleene showed
that whether or not we accept the Fan Theorem, its existence demonstrates
that it is not possible to simultaneously believe that every sequence can be
algorithmically generated, and that there exists a computable covering for the
space of all unbounded sequences when it comes to certain "universal" properties –
the two situations must be mutually exclusive. Despite the troubling implications
of Kleene’s counterexample, there are nevertheless reasons both intuitive and
practical to accept some form of the Fan Theorem: at once it can be viewed as an
intuitionistic version of König’s Lemma, an expression of compactness for C (and
even B), and a constructive method of effectively covering a space otherwise
difficult, perhaps impossible, to fully envision.
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