### Nuprl Lemma : xxst_anti_sym_wf

`∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (st_anti_sym(T;R) ∈ ℙ)`

Proof

Definitions occuring in Statement :  xxst_anti_sym: `st_anti_sym(T;R)` uall: `∀[x:A]. B[x]` prop: `ℙ` member: `t ∈ T` function: `x:A ⟶ B[x]` universe: `Type`
Definitions unfolded in proof :  xxst_anti_sym: `st_anti_sym(T;R)` uall: `∀[x:A]. B[x]` member: `t ∈ T` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` prop: `ℙ`
Lemmas referenced :  st_anti_sym_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (st\_anti\_sym(T;R)  \mmember{}  \mBbbP{})

Date html generated: 2016_05_15-PM-00_01_08
Last ObjectModification: 2015_12_26-PM-11_26_28

Theory : gen_algebra_1

Home Index