### Nuprl Lemma : drng_all_properties

`∀[r:DRng]`
`  (Assoc(|r|;+r)`
`  ∧ Ident(|r|;+r;0)`
`  ∧ Inverse(|r|;+r;0;-r)`
`  ∧ Assoc(|r|;*)`
`  ∧ Ident(|r|;*;1)`
`  ∧ BiLinear(|r|;+r;*)`
`  ∧ IsEqFun(|r|;=b))`

Proof

Definitions occuring in Statement :  drng: `DRng` rng_one: `1` rng_times: `*` rng_minus: `-r` rng_zero: `0` rng_plus: `+r` rng_eq: `=b` rng_car: `|r|` bilinear: `BiLinear(T;pl;tm)` ident: `Ident(T;op;id)` eqfun_p: `IsEqFun(T;eq)` inverse: `Inverse(T;op;id;inv)` assoc: `Assoc(T;op)` uall: `∀[x:A]. B[x]` and: `P ∧ Q`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` drng: `DRng` and: `P ∧ Q` assoc: `Assoc(T;op)` ident: `Ident(T;op;id)` inverse: `Inverse(T;op;id;inv)` bilinear: `BiLinear(T;pl;tm)` eqfun_p: `IsEqFun(T;eq)` uiff: `uiff(P;Q)` uimplies: `b supposing a` prop: `ℙ` infix_ap: `x f y` implies: `P `` Q` ring_p: `IsRing(T;plus;zero;neg;times;one)` monoid_p: `IsMonoid(T;op;id)` group_p: `IsGroup(T;op;id;inv)` cand: `A c∧ B`
Lemmas referenced :  drng_properties rng_car_wf assert_wf rng_eq_wf assert_witness equal_wf drng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality applyEquality equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation

Latex:
\mforall{}[r:DRng]
(Assoc(|r|;+r)
\mwedge{}  Ident(|r|;+r;0)
\mwedge{}  Inverse(|r|;+r;0;-r)
\mwedge{}  Assoc(|r|;*)
\mwedge{}  Ident(|r|;*;1)
\mwedge{}  BiLinear(|r|;+r;*)
\mwedge{}  IsEqFun(|r|;=\msubb{}))

Date html generated: 2016_05_15-PM-00_20_36
Last ObjectModification: 2015_12_27-AM-00_02_50

Theory : rings_1

Home Index