### Nuprl Lemma : max_ideal_p_wf

`∀[r:RngSig]. ∀[m:|r| ⟶ ℙ].  (IsMaxIdeal(r;m) ∈ ℙ)`

Proof

Definitions occuring in Statement :  max_ideal_p: `IsMaxIdeal(r;m)` rng_car: `|r|` rng_sig: `RngSig` uall: `∀[x:A]. B[x]` prop: `ℙ` member: `t ∈ T` function: `x:A ⟶ B[x]`
Definitions unfolded in proof :  max_ideal_p: `IsMaxIdeal(r;m)` uall: `∀[x:A]. B[x]` member: `t ∈ T` so_lambda: `λ2x.t[x]` infix_ap: `x f y` so_apply: `x[s]` prop: `ℙ`
Lemmas referenced :  all_wf rng_car_wf iff_wf not_wf exists_wf rng_plus_wf rng_times_wf rng_minus_wf rng_one_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[r:RngSig].  \mforall{}[m:|r|  {}\mrightarrow{}  \mBbbP{}].    (IsMaxIdeal(r;m)  \mmember{}  \mBbbP{})

Date html generated: 2016_05_15-PM-00_24_51
Last ObjectModification: 2015_12_27-AM-00_00_07

Theory : rings_1

Home Index