### Nuprl Lemma : one_ideal_wf

`∀[r:CRng]. ((1r) ∈ Ideal(r){i})`

Proof

Definitions occuring in Statement :  one_ideal: `(1r)` ideal: `Ideal(r){i}` crng: `CRng` uall: `∀[x:A]. B[x]` member: `t ∈ T`
Definitions unfolded in proof :  one_ideal: `(1r)` ideal: `Ideal(r){i}` uall: `∀[x:A]. B[x]` member: `t ∈ T` crng: `CRng` rng: `Rng` ideal_p: `S Ideal of R` and: `P ∧ Q` cand: `A c∧ B` all: `∀x:A. B[x]` implies: `P `` Q` true: `True` prop: `ℙ` subgrp_p: `s SubGrp of g` add_grp_of_rng: `r↓+gp` grp_car: `|g|` pi1: `fst(t)`
Lemmas referenced :  crng_wf true_wf rng_car_wf ideal_p_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid dependent_set_memberEquality lambdaEquality isectElimination thin setElimination rename hypothesisEquality independent_pairFormation lambdaFormation natural_numberEquality because_Cache

Latex:
\mforall{}[r:CRng].  ((1r)  \mmember{}  Ideal(r)\{i\})

Date html generated: 2016_05_15-PM-00_23_05
Last ObjectModification: 2015_12_27-AM-00_01_03

Theory : rings_1

Home Index