### Nuprl Lemma : rng_chom_p_wf

`∀[r,s:RngSig]. ∀[f:|r| ⟶ |s|].  (rng_chom_p(r;s;f) ∈ ℙ)`

Proof

Definitions occuring in Statement :  rng_chom_p: `rng_chom_p(r;s;f)` rng_car: `|r|` rng_sig: `RngSig` uall: `∀[x:A]. B[x]` prop: `ℙ` member: `t ∈ T` function: `x:A ⟶ B[x]`
Definitions unfolded in proof :  rng_chom_p: `rng_chom_p(r;s;f)` uall: `∀[x:A]. B[x]` member: `t ∈ T` so_lambda: `λ2x.t[x]` infix_ap: `x f y` so_apply: `x[s]`
Lemmas referenced :  and_wf rng_hom_p_wf all_wf rng_car_wf equal_wf rng_times_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[r,s:RngSig].  \mforall{}[f:|r|  {}\mrightarrow{}  |s|].    (rng\_chom\_p(r;s;f)  \mmember{}  \mBbbP{})

Date html generated: 2016_05_15-PM-00_25_08
Last ObjectModification: 2015_12_27-AM-00_00_03

Theory : rings_1

Home Index