### Nuprl Lemma : rng_minus_over_plus

`∀[r:Rng]. ∀[a,b:|r|].  ((-r (a +r b)) = ((-r b) +r (-r a)) ∈ |r|)`

Proof

Definitions occuring in Statement :  rng: `Rng` rng_minus: `-r` rng_plus: `+r` rng_car: `|r|` uall: `∀[x:A]. B[x]` infix_ap: `x f y` apply: `f a` equal: `s = t ∈ T`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` subtype_rel: `A ⊆r B` add_grp_of_rng: `r↓+gp` grp_car: `|g|` pi1: `fst(t)` grp_inv: `~` pi2: `snd(t)` grp_op: `*` rng: `Rng`
Lemmas referenced :  grp_inv_thru_op add_grp_of_rng_wf_a grp_subtype_igrp rng_car_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule isect_memberEquality axiomEquality setElimination rename

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:|r|].    ((-r  (a  +r  b))  =  ((-r  b)  +r  (-r  a)))

Date html generated: 2016_05_15-PM-00_21_14
Last ObjectModification: 2015_12_27-AM-00_02_25

Theory : rings_1

Home Index