### Nuprl Lemma : assert_of_set_lt

`∀[p:PosetSig]. ∀[a,b:|p|].  uiff(↑(a <b b);a <p b)`

Proof

Definitions occuring in Statement :  set_lt: `a <p b` set_blt: `a <b b` set_car: `|p|` poset_sig: `PosetSig` assert: `↑b` uiff: `uiff(P;Q)` uall: `∀[x:A]. B[x]`
Definitions unfolded in proof :  set_lt: `a <p b` uall: `∀[x:A]. B[x]` member: `t ∈ T` uiff: `uiff(P;Q)` and: `P ∧ Q` uimplies: `b supposing a` implies: `P `` Q` prop: `ℙ`
Lemmas referenced :  assert_witness set_blt_wf assert_wf set_car_wf poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination because_Cache productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:PosetSig].  \mforall{}[a,b:|p|].    uiff(\muparrow{}(a  <\msubb{}  b);a  <p  b)

Date html generated: 2016_05_15-PM-00_04_27
Last ObjectModification: 2015_12_26-PM-11_28_39

Theory : sets_1

Home Index