### Nuprl Lemma : consensus-accum-num-state_wf

`∀[V:Type]. ∀[A:Id List]. ∀[t:ℕ]. ∀[f:(V List) ─→ V]. ∀[v0:V]. ∀[L:consensus-rcv(V;A) List].`
`  (consensus-accum-num-state(t;f;v0;L) ∈ 𝔹 × ℤ × {a:Id| (a ∈ A)}  List × V List × V)`

Proof

Definitions occuring in Statement :  consensus-accum-num-state: `consensus-accum-num-state(t;f;v0;L)` consensus-rcv: `consensus-rcv(V;A)` Id: `Id` l_member: `(x ∈ l)` list: `T List` nat: `ℕ` bool: `𝔹` uall: `∀[x:A]. B[x]` member: `t ∈ T` set: `{x:A| B[x]} ` function: `x:A ─→ B[x]` product: `x:A × B[x]` int: `ℤ` universe: `Type`
Lemmas :  list_accum_wf bool_wf list_wf l_member_wf bfalse_wf nil_wf consensus-accum-num_wf consensus-rcv_wf nat_wf Id_wf
\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[t:\mBbbN{}].  \mforall{}[f:(V  List)  {}\mrightarrow{}  V].  \mforall{}[v0:V].  \mforall{}[L:consensus-rcv(V;A)  List].
(consensus-accum-num-state(t;f;v0;L)  \mmember{}  \mBbbB{}  \mtimes{}  \mBbbZ{}  \mtimes{}  \{a:Id|  (a  \mmember{}  A)\}    List  \mtimes{}  V  List  \mtimes{}  V)

Date html generated: 2015_07_17-AM-11_49_26
Last ObjectModification: 2015_01_28-AM-00_43_28

Home Index