### Nuprl Lemma : fpf-join-ap-left

`∀[A:Type]. ∀[B,C:A ─→ Type]. ∀[eq:EqDecider(A)]. ∀[f:a:A fp-> B[a]]. ∀[g:a:A fp-> C[a]]. ∀[x:A].`
`  f ⊕ g(x) = f(x) ∈ B[x] supposing ↑x ∈ dom(f)`

Proof

Definitions occuring in Statement :  fpf-join: `f ⊕ g` fpf-ap: `f(x)` fpf-dom: `x ∈ dom(f)` fpf: `a:A fp-> B[a]` deq: `EqDecider(T)` assert: `↑b` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` so_apply: `x[s]` function: `x:A ─→ B[x]` universe: `Type` equal: `s = t ∈ T`
Lemmas :  assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top fpf_wf deq_wf bool_wf fpf-ap_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
\mforall{}[A:Type].  \mforall{}[B,C:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[g:a:A  fp->  C[a]].  \mforall{}[x:A].
f  \moplus{}  g(x)  =  f(x)  supposing  \muparrow{}x  \mmember{}  dom(f)

Date html generated: 2015_07_17-AM-09_20_03
Last ObjectModification: 2015_01_28-AM-07_48_46

Home Index