### Nuprl Lemma : continuous_wf

`∀[I:Interval]. ∀[f:I ⟶ℝ].  (f[x] continuous for x ∈ I ∈ ℙ)`

Proof

Definitions occuring in Statement :  continuous: `f[x] continuous for x ∈ I` rfun: `I ⟶ℝ` interval: `Interval` uall: `∀[x:A]. B[x]` prop: `ℙ` so_apply: `x[s]` member: `t ∈ T`
Definitions unfolded in proof :  continuous: `f[x] continuous for x ∈ I` uall: `∀[x:A]. B[x]` member: `t ∈ T` prop: `ℙ` so_lambda: `λ2x.t[x]` all: `∀x:A. B[x]` and: `P ∧ Q` implies: `P `` Q` so_apply: `x[s]` rfun: `I ⟶ℝ` nat_plus: `ℕ+` uimplies: `b supposing a` rneq: `x ≠ y` guard: `{T}` or: `P ∨ Q` iff: `P `⇐⇒` Q` rev_implies: `P `` Q` rless: `x < y` sq_exists: `∃x:{A| B[x]}` decidable: `Dec(P)` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` false: `False` not: `¬A` top: `Top`
Lemmas referenced :  rfun_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int rdiv_wf i-member-approx rsub_wf rabs_wf rleq_wf i-member_wf int-to-real_wf rless_wf real_wf sq_exists_wf i-approx_wf icompact_wf nat_plus_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis hypothesisEquality lambdaEquality lambdaFormation setElimination rename because_Cache productEquality natural_numberEquality functionEquality applyEquality dependent_functionElimination independent_functionElimination dependent_set_memberEquality independent_isectElimination inrFormation productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (f[x]  continuous  for  x  \mmember{}  I  \mmember{}  \mBbbP{})

Date html generated: 2016_05_18-AM-09_08_45
Last ObjectModification: 2016_01_17-AM-02_35_08

Theory : reals

Home Index