### Nuprl Lemma : rmul-ident-div

`∀[r,s:ℝ].  ((r/r) * s) = s supposing r ≠ r0`

Proof

Definitions occuring in Statement :  rdiv: `(x/y)` rneq: `x ≠ y` req: `x = y` rmul: `a * b` int-to-real: `r(n)` real: `ℝ` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` natural_number: `\$n`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` implies: `P `` Q` prop: `ℙ` uiff: `uiff(P;Q)` and: `P ∧ Q` rev_uimplies: `rev_uimplies(P;Q)`
Lemmas referenced :  req_witness rmul_wf rdiv_wf rneq_wf int-to-real_wf real_wf rmul-identity1 req_functionality rmul_functionality rdiv-self req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis independent_functionElimination natural_numberEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry productElimination

Latex:
\mforall{}[r,s:\mBbbR{}].    ((r/r)  *  s)  =  s  supposing  r  \mneq{}  r0

Date html generated: 2016_05_18-AM-07_21_29
Last ObjectModification: 2015_12_28-AM-00_47_52

Theory : reals

Home Index