### Nuprl Lemma : cat-isomorphism_wf

`∀[C:SmallCategory]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) x y].  (cat-isomorphism(C;x;y;f) ∈ ℙ)`

Proof

Definitions occuring in Statement :  cat-isomorphism: `cat-isomorphism(C;x;y;f)` cat-arrow: `cat-arrow(C)` cat-ob: `cat-ob(C)` small-category: `SmallCategory` uall: `∀[x:A]. B[x]` prop: `ℙ` member: `t ∈ T` apply: `f a`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` cat-isomorphism: `cat-isomorphism(C;x;y;f)` so_lambda: `λ2x.t[x]` prop: `ℙ` and: `P ∧ Q` so_apply: `x[s]`
Lemmas referenced :  exists_wf cat-arrow_wf cat-inverse_wf cat-ob_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis lambdaEquality productEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].    (cat-isomorphism(C;x;y;f)  \mmember{}  \mBbbP{})

Date html generated: 2017_01_09-AM-09_11_13
Last ObjectModification: 2017_01_08-PM-01_05_58

Theory : small!categories

Home Index