### Nuprl Lemma : rem_bounds_3

`∀[a:{...0}]. ∀[n:{...-1}].  ((0 ≥ (a rem n) ) ∧ ((a rem n) > n))`

Proof

Definitions occuring in Statement :  int_lower: `{...i}` uall: `∀[x:A]. B[x]` gt: `i > j` ge: `i ≥ j ` and: `P ∧ Q` remainder: `n rem m` minus: `-n` natural_number: `\$n`
Definitions unfolded in proof :  gt: `i > j` true: `True` less_than': `less_than'(a;b)` top: `Top` subtype_rel: `A ⊆r B` subtract: `n - m` guard: `{T}` rev_implies: `P `` Q` iff: `P `⇐⇒` Q` prop: `ℙ` or: `P ∨ Q` decidable: `Dec(P)` uimplies: `b supposing a` rev_uimplies: `rev_uimplies(P;Q)` uiff: `uiff(P;Q)` all: `∀x:A. B[x]` nequal: `a ≠ b ∈ T ` int_lower: `{...i}` false: `False` implies: `P `` Q` not: `¬A` le: `A ≤ B` ge: `i ≥ j ` and: `P ∧ Q` member: `t ∈ T` uall: `∀[x:A]. B[x]` bool: `𝔹` unit: `Unit` it: `⋅` btrue: `tt` less_than: `a < b` squash: `↓T` bfalse: `ff` exists: `∃x:A. B[x]` so_lambda: `λ2x.t[x]` so_apply: `x[s]` sq_type: `SQType(T)` bnot: `¬bb` ifthenelse: `if b then t else f fi ` assert: `↑b` sq_stable: `SqStable(P)` cand: `A c∧ B` int_nzero: `ℤ-o`
Lemmas referenced :  int_lower_wf equal_wf less_than_irreflexivity le_weakening less_than_transitivity1 member-less_than or_wf le-add-cancel add_functionality_wrt_le minus-zero minus-add zero-add add-swap add-commutes add-associates condition-implies-le not-le-2 false_wf le_wf decidable__le not-equal-2 less_than'_wf decidable__lt lt_int_wf eqtt_to_assert assert_of_lt_int top_wf istype-void eqff_to_assert set_subtype_base int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf iff_transitivity assert_wf bnot_wf not_wf less_than_wf iff_weakening_uiff assert_of_bnot eq_int_wf assert_of_eq_int le_antisymmetry_iff sq_stable_from_decidable add-zero le-add-cancel-alt equal-wf-base not-lt-2 gt_wf iff_weakening_equal subtype_rel_self nequal_wf subtype_rel_sets rem-zero true_wf squash_wf ge_wf not-gt-2 decidable__int_equal
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality orFunctionality addLevel independent_functionElimination minusEquality intEquality voidEquality isect_memberEquality applyEquality inrFormation voidElimination lambdaFormation independent_pairFormation inlFormation unionElimination addEquality independent_isectElimination hypothesis rename setElimination remainderEquality natural_numberEquality isectElimination extract_by_obid because_Cache hypothesisEquality dependent_functionElimination lambdaEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lessCases Error :remNegative,  Error :inhabitedIsType,  Error :lambdaFormation_alt,  equalityElimination Error :isect_memberFormation_alt,  axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :universeIsType,  imageMemberEquality baseClosed imageElimination Error :dependent_pairFormation_alt,  Error :equalityIsType4,  baseApply closedConclusion Error :lambdaEquality_alt,  promote_hyp instantiate cumulativity Error :functionIsType,  Error :equalityIsType1,  int_eqReduceTrueSq int_eqReduceFalseSq remainderBounds3 productEquality universeEquality setEquality dependent_set_memberEquality

Latex:
\mforall{}[a:\{...0\}].  \mforall{}[n:\{...-1\}].    ((0  \mgeq{}  (a  rem  n)  )  \mwedge{}  ((a  rem  n)  >  n))

Date html generated: 2019_06_20-AM-11_24_11
Last ObjectModification: 2018_10_15-PM-03_03_15

Theory : arithmetic

Home Index