### Nuprl Lemma : uniform-TI_wf

`∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[Q:T ⟶ ℙ].  (uniform-TI(T;x,y.R[x;y];t.Q[t]) ∈ ℙ)`

Proof

Definitions occuring in Statement :  uniform-TI: `uniform-TI(T;x,y.R[x; y];t.Q[t])` uall: `∀[x:A]. B[x]` prop: `ℙ` so_apply: `x[s1;s2]` so_apply: `x[s]` member: `t ∈ T` function: `x:A ⟶ B[x]` universe: `Type`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` uniform-TI: `uniform-TI(T;x,y.R[x; y];t.Q[t])` implies: `P `` Q` prop: `ℙ` so_lambda: `λ2x.t[x]` so_apply: `x[s1;s2]` subtype_rel: `A ⊆r B` so_apply: `x[s]`
Lemmas referenced :  uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality setEquality applyEquality hypothesis universeEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry cumulativity isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].    (uniform-TI(T;x,y.R[x;y];t.Q[t])  \mmember{}  \mBbbP{})

Date html generated: 2016_05_13-PM-03_49_59
Last ObjectModification: 2015_12_26-AM-10_17_35

Theory : bar-induction

Home Index