### Nuprl Lemma : bar-val-diverge

`∀[T:Type]. ∀[n:ℕ].  (bar-val(n;diverge()) ~ inr ⋅ )`

Proof

Definitions occuring in Statement :  diverge: `diverge()` bar-val: `bar-val(n;x)` nat: `ℕ` it: `⋅` uall: `∀[x:A]. B[x]` inr: `inr x ` universe: `Type` sqequal: `s ~ t`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` nat: `ℕ` implies: `P `` Q` false: `False` ge: `i ≥ j ` guard: `{T}` uimplies: `b supposing a` prop: `ℙ` bar-val: `bar-val(n;x)` diverge: `diverge()` eq_int: `(i =z j)` subtract: `n - m` ifthenelse: `if b then t else f fi ` btrue: `tt` all: `∀x:A. B[x]` decidable: `Dec(P)` or: `P ∨ Q` iff: `P `⇐⇒` Q` and: `P ∧ Q` not: `¬A` rev_implies: `P `` Q` uiff: `uiff(P;Q)` subtype_rel: `A ⊆r B` top: `Top` le: `A ≤ B` less_than': `less_than'(a;b)` true: `True` exposed-bfalse: `exposed-bfalse` bool: `𝔹` unit: `Unit` it: `⋅` bfalse: `ff` exists: `∃x:A. B[x]` sq_type: `SQType(T)` bnot: `¬bb` assert: `↑b`
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination sqequalAxiom unionElimination independent_pairFormation productElimination addEquality applyEquality isect_memberEquality voidEquality intEquality minusEquality because_Cache equalityElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].    (bar-val(n;diverge())  \msim{}  inr  \mcdot{}  )

Date html generated: 2017_04_14-AM-07_46_03
Last ObjectModification: 2017_02_27-PM-03_16_28

Theory : co-recursion

Home Index