### Nuprl Lemma : monotone-bar-induction2

`∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.`
`  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] `` (∀m:ℕ. B[n + 1;s.m@n])))`
`  `` (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] `` ⇃(Q[n;s])))`
`  `` (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) `` ⇃(Q[n;s])))`
`  `` (∀alpha:ℕ ⟶ ℕ. ∃m:ℕ. B[m;alpha])`
`  `` ⇃(Q[0;λx.⊥]))`

Proof

Definitions occuring in Statement :  quotient: `x,y:A//B[x; y]` seq-add: `s.x@n` int_seg: `{i..j-}` nat: `ℕ` bottom: `⊥` prop: `ℙ` so_apply: `x[s1;s2]` all: `∀x:A. B[x]` exists: `∃x:A. B[x]` implies: `P `` Q` true: `True` lambda: `λx.A[x]` function: `x:A ⟶ B[x]` add: `n + m` natural_number: `\$n`
Definitions unfolded in proof :  all: `∀x:A. B[x]` implies: `P `` Q` exists: `∃x:A. B[x]` member: `t ∈ T` so_apply: `x[s1;s2]` subtype_rel: `A ⊆r B` uall: `∀[x:A]. B[x]` nat: `ℕ` uimplies: `b supposing a` le: `A ≤ B` and: `P ∧ Q` less_than': `less_than'(a;b)` false: `False` not: `¬A` prop: `ℙ` ge: `i ≥ j ` decidable: `Dec(P)` or: `P ∨ Q` satisfiable_int_formula: `satisfiable_int_formula(fmla)` top: `Top` so_lambda: `λ2x y.t[x; y]` pi1: `fst(t)` squash: `↓T` true: `True` lelt: `i ≤ j < k` iff: `P `⇐⇒` Q` rev_implies: `P `` Q` assert: `↑b` bnot: `¬bb` guard: `{T}` sq_type: `SQType(T)` bfalse: `ff` ifthenelse: `if b then t else f fi ` uiff: `uiff(P;Q)` btrue: `tt` it: `⋅` unit: `Unit` bool: `𝔹` int_seg: `{i..j-}` ext2Baire: `ext2Baire(n;f;d)` cand: `A c∧ B` outl: `outl(x)` so_apply: `x[s]` so_lambda: `λ2x.t[x]` sq_stable: `SqStable(P)` less_than: `a < b` subtract: `n - m` nequal: `a ≠ b ∈ T ` seq-add: `s.x@n` seq-append: `seq-append(n;m;s1;s2)` seq-adjoin: `s++t` quotient: `x,y:A//B[x; y]` isl: `isl(x)`
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut hypothesis promote_hyp thin sqequalHypSubstitution productElimination introduction extract_by_obid dependent_functionElimination hypothesisEquality sqequalRule Error :functionIsType,  because_Cache Error :productIsType,  Error :universeIsType,  applyEquality isectElimination natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation instantiate universeEquality Error :dependent_set_memberEquality_alt,  addEquality unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :inhabitedIsType,  equalityTransitivity equalitySymmetry functionExtensionality functionEquality Error :equalityIstype,  Error :inlEquality_alt,  unionEquality Error :unionIsType,  baseClosed imageMemberEquality imageElimination hyp_replacement cumulativity Error :equalityIsType1,  equalityElimination Error :functionExtensionality_alt,  applyLambdaEquality intEquality Error :inrEquality_alt,  closedConclusion baseApply Error :equalityIsType4,  Error :setIsType,  minusEquality int_eqReduceFalseSq int_eqReduceTrueSq axiomSqEquality Error :isect_memberFormation_alt,  lessCases pertypeElimination pointwiseFunctionality sqequalBase

Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n])))
{}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s])))
{}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
{}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}m:\mBbbN{}.  B[m;alpha])
{}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))

Date html generated: 2019_06_20-PM-02_54_32
Last ObjectModification: 2018_12_06-PM-11_36_05

Theory : continuity

Home Index