### Nuprl Lemma : rep-seq-from-prop1

`∀[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[f:ℕ ⟶ T]. ∀[m:{n...}].  (rep-seq-from(s;m;f) = s ∈ (ℕn ⟶ T))`

Proof

Definitions occuring in Statement :  rep-seq-from: `rep-seq-from(s;n;f)` int_upper: `{i...}` int_seg: `{i..j-}` nat: `ℕ` uall: `∀[x:A]. B[x]` function: `x:A ⟶ B[x]` natural_number: `\$n` universe: `Type` equal: `s = t ∈ T`
Definitions unfolded in proof :  rep-seq-from: `rep-seq-from(s;n;f)` member: `t ∈ T` uall: `∀[x:A]. B[x]` int_seg: `{i..j-}` int_upper: `{i...}` all: `∀x:A. B[x]` implies: `P `` Q` bool: `𝔹` unit: `Unit` it: `⋅` btrue: `tt` uiff: `uiff(P;Q)` and: `P ∧ Q` uimplies: `b supposing a` less_than: `a < b` less_than': `less_than'(a;b)` top: `Top` true: `True` squash: `↓T` not: `¬A` false: `False` prop: `ℙ` bfalse: `ff` exists: `∃x:A. B[x]` or: `P ∨ Q` sq_type: `SQType(T)` guard: `{T}` bnot: `¬bb` ifthenelse: `if b then t else f fi ` assert: `↑b` lelt: `i ≤ j < k` nat: `ℕ` ge: `i ≥ j ` satisfiable_int_formula: `satisfiable_int_formula(fmla)`
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_seg_properties int_upper_properties nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf int_upper_wf nat_wf
Rules used in proof :  functionExtensionality sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed imageElimination independent_functionElimination applyEquality dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity lambdaEquality int_eqEquality intEquality computeAll functionEquality universeEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}[m:\{n...\}].    (rep-seq-from(s;m;f)  =  s)

Date html generated: 2017_04_20-AM-07_21_09
Last ObjectModification: 2017_02_27-PM-05_56_27

Theory : continuity

Home Index