### Nuprl Lemma : strong-continuity2-no-inner-squash-cantor5

`∀F:(ℕ ⟶ 𝔹) ⟶ ℤ`
`  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℤ?)`
`     ∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℤ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℤ?) supposing ↑isl(M n f))))`

Proof

Definitions occuring in Statement :  quotient: `x,y:A//B[x; y]` int_seg: `{i..j-}` nat: `ℕ` assert: `↑b` isl: `isl(x)` bool: `𝔹` uimplies: `b supposing a` all: `∀x:A. B[x]` exists: `∃x:A. B[x]` and: `P ∧ Q` true: `True` unit: `Unit` apply: `f a` function: `x:A ⟶ B[x]` inl: `inl x` union: `left + right` natural_number: `\$n` int: `ℤ` equal: `s = t ∈ T`
Definitions unfolded in proof :  so_apply: `x[s]` so_lambda: `λ2x.t[x]` prop: `ℙ` exists: `∃x:A. B[x]` implies: `P `` Q` member: `t ∈ T` uall: `∀[x:A]. B[x]` all: `∀x:A. B[x]`
Lemmas referenced :  equal_wf all_wf biject-int-nat surject-nat-bool subtype_rel_self nat_wf bool_wf strong-continuity2-half-squash-surject-biject
Rules used in proof :  functionExtensionality applyEquality sqequalRule lambdaEquality dependent_pairFormation functionEquality hypothesisEquality dependent_functionElimination because_Cache independent_functionElimination intEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}
\00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbZ{}?)
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))

Date html generated: 2017_09_29-PM-06_06_59
Last ObjectModification: 2017_09_04-AM-11_21_22

Theory : continuity

Home Index