### Nuprl Lemma : strong-continuity2-no-inner-squash

`∀F:(ℕ ⟶ ℕ) ⟶ ℕ`
`  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)`
`     ∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))))`

Proof

Definitions occuring in Statement :  quotient: `x,y:A//B[x; y]` int_seg: `{i..j-}` nat: `ℕ` assert: `↑b` isl: `isl(x)` uimplies: `b supposing a` all: `∀x:A. B[x]` exists: `∃x:A. B[x]` and: `P ∧ Q` true: `True` unit: `Unit` apply: `f a` function: `x:A ⟶ B[x]` inl: `inl x` union: `left + right` natural_number: `\$n` equal: `s = t ∈ T`
Definitions unfolded in proof :  squash: `↓T` cand: `A c∧ B` and: `P ∧ Q` uimplies: `b supposing a` member: `t ∈ T` uall: `∀[x:A]. B[x]` all: `∀x:A. B[x]` strong-continuity2: `strong-continuity2(T;F)`
Lemmas referenced :  subtype_rel_self nat_wf strong-continuity2-half-squash
Rules used in proof :  functionEquality dependent_functionElimination baseClosed hypothesisEquality imageMemberEquality independent_functionElimination independent_pairFormation because_Cache independent_isectElimination hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
\00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))

Date html generated: 2017_09_29-PM-06_05_37
Last ObjectModification: 2017_09_03-PM-09_28_20

Theory : continuity

Home Index