### Nuprl Definition : strong-continuity3

`strong-continuity3(T;F) ==`
`  ∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)`
`   ∀f:ℕ ⟶ T. ∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) `` (m = n ∈ ℕ))))`

Definitions occuring in Statement :  int_seg: `{i..j-}` nat: `ℕ` assert: `↑b` isl: `isl(x)` all: `∀x:A. B[x]` exists: `∃x:A. B[x]` implies: `P `` Q` and: `P ∧ Q` unit: `Unit` apply: `f a` function: `x:A ⟶ B[x]` inl: `inl x` union: `left + right` natural_number: `\$n` equal: `s = t ∈ T`
Definitions occuring in definition :  nat: `ℕ` equal: `s = t ∈ T` apply: `f a` isl: `isl(x)` assert: `↑b` implies: `P `` Q` all: `∀x:A. B[x]` inl: `inl x` unit: `Unit` union: `left + right` and: `P ∧ Q` exists: `∃x:A. B[x]` function: `x:A ⟶ B[x]` natural_number: `\$n` int_seg: `{i..j-}`
FDL editor aliases :  strong-continuity3

Latex:
strong-continuity3(T;F)  ==
\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n))))

Date html generated: 2016_12_12-AM-09_22_37
Last ObjectModification: 2016_11_22-AM-11_41_11

Theory : continuity

Home Index