### Nuprl Lemma : unary-almost-full-has-strict-inc

`∀A:ℕ ⟶ ℙ. ((∀s:StrictInc. ⇃(∃n:ℕ. A[s n])) `` ⇃(∃s:StrictInc. ∀n:ℕ. A[s n]))`

Proof

Definitions occuring in Statement :  strict-inc: `StrictInc` quotient: `x,y:A//B[x; y]` nat: `ℕ` prop: `ℙ` so_apply: `x[s]` all: `∀x:A. B[x]` exists: `∃x:A. B[x]` implies: `P `` Q` true: `True` apply: `f a` function: `x:A ⟶ B[x]`
Definitions unfolded in proof :  all: `∀x:A. B[x]` implies: `P `` Q` member: `t ∈ T` uall: `∀[x:A]. B[x]` exists: `∃x:A. B[x]` so_apply: `x[s]` strict-inc: `StrictInc` subtype_rel: `A ⊆r B` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` uimplies: `b supposing a` prop: `ℙ` nat: `ℕ` ge: `i ≥ j ` decidable: `Dec(P)` or: `P ∨ Q` not: `¬A` satisfiable_int_formula: `satisfiable_int_formula(fmla)` false: `False` top: `Top` and: `P ∧ Q` int_seg: `{i..j-}` lelt: `i ≤ j < k` le: `A ≤ B` less_than: `a < b` squash: `↓T` guard: `{T}` cand: `A c∧ B` bool: `𝔹` unit: `Unit` it: `⋅` btrue: `tt` uiff: `uiff(P;Q)` ifthenelse: `if b then t else f fi ` bfalse: `ff` sq_type: `SQType(T)` bnot: `¬bb` assert: `↑b` rev_implies: `P `` Q` iff: `P `⇐⇒` Q` subtract: `n - m` true: `True` so_lambda: `λ2x.t[x]`
Lemmas referenced :  strict-inc_wf quotient_wf nat_wf true_wf istype-nat equiv_rel_true nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf istype-less_than implies-quotient-true less_than_wf subtype_rel_self axiom-choice-00-quot implies-strict-inc primrec_wf primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf add-associates add-swap add-commutes zero-add add-subtract-cancel squash_wf istype-universe primrec0_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma primrec-wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut sqequalRule Error :functionIsType,  Error :universeIsType,  introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin productEquality applyEquality hypothesisEquality setElimination rename because_Cache Error :lambdaEquality_alt,  Error :inhabitedIsType,  Error :productIsType,  independent_isectElimination universeEquality dependent_functionElimination Error :dependent_set_memberEquality_alt,  addEquality natural_numberEquality unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation productElimination imageElimination instantiate functionEquality equalityElimination equalityTransitivity equalitySymmetry Error :equalityIstype,  promote_hyp cumulativity hyp_replacement imageMemberEquality baseClosed applyLambdaEquality Error :setIsType

Latex:
\mforall{}A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}s:StrictInc.  \00D9(\mexists{}n:\mBbbN{}.  A[s  n]))  {}\mRightarrow{}  \00D9(\mexists{}s:StrictInc.  \mforall{}n:\mBbbN{}.  A[s  n]))

Date html generated: 2019_06_20-PM-02_57_32
Last ObjectModification: 2019_02_06-PM-03_58_56

Theory : continuity

Home Index