### Nuprl Lemma : name_eq-normalize4

`∀[F,G,a,b:Top].  (case name_eq(a;b) of inl(x) => F a | inr(y) => G ~ case name_eq(a;b) of inl(x) => F b | inr(y) => G)`

Proof

Definitions occuring in Statement :  name_eq: `name_eq(x;y)` uall: `∀[x:A]. B[x]` top: `Top` apply: `f a` decide: `case b of inl(x) => s[x] | inr(y) => t[y]` sqequal: `s ~ t`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` ifthenelse: `if b then t else f fi `
Lemmas referenced :  name_eq-normalize top_wf
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis because_Cache isect_memberFormation introduction sqequalAxiom sqequalRule isect_memberEquality

Latex:
\mforall{}[F,G,a,b:Top].
(case  name\_eq(a;b)  of  inl(x)  =>  F  a  |  inr(y)  =>  G  \msim{}  case  name\_eq(a;b)
of  inl(x)  =>
F  b
|  inr(y)  =>
G)

Date html generated: 2016_05_14-PM-03_34_55
Last ObjectModification: 2015_12_26-PM-05_59_47

Theory : decidable!equality

Home Index