### Nuprl Lemma : nat_plus_inc_int_nzero

`ℕ+ ⊆r ℤ-o`

Proof

Definitions occuring in Statement :  int_nzero: `ℤ-o` nat_plus: `ℕ+` subtype_rel: `A ⊆r B`
Definitions unfolded in proof :  subtype_rel: `A ⊆r B` member: `t ∈ T` nat_plus: `ℕ+` int_nzero: `ℤ-o` uall: `∀[x:A]. B[x]` so_lambda: `λ2x.t[x]` so_apply: `x[s]` uimplies: `b supposing a` prop: `ℙ` all: `∀x:A. B[x]` implies: `P `` Q` nequal: `a ≠ b ∈ T ` not: `¬A` false: `False` guard: `{T}`
Lemmas referenced :  subtype_rel_sets less_than_wf nequal_wf less_than_transitivity1 le_weakening less_than_irreflexivity equal_wf equal-wf-base int_subtype_base nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality cut hypothesisEquality applyEquality thin sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality because_Cache natural_numberEquality hypothesis independent_isectElimination setElimination rename setEquality lambdaFormation dependent_functionElimination independent_functionElimination voidElimination baseClosed

Latex:
\mBbbN{}\msupplus{}  \msubseteq{}r  \mBbbZ{}\msupminus{}\msupzero{}

Date html generated: 2019_06_20-AM-11_33_34
Last ObjectModification: 2018_09_17-PM-05_37_06

Theory : int_1

Home Index