### Nuprl Lemma : imax_com

`∀[a,b:ℤ].  (imax(a;b) = imax(b;a) ∈ ℤ)`

Proof

Definitions occuring in Statement :  imax: `imax(a;b)` uall: `∀[x:A]. B[x]` int: `ℤ` equal: `s = t ∈ T`
Definitions unfolded in proof :  imax: `imax(a;b)` uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` all: `∀x:A. B[x]` implies: `P `` Q` bool: `𝔹` unit: `Unit` it: `⋅` btrue: `tt` uiff: `uiff(P;Q)` and: `P ∧ Q` ifthenelse: `if b then t else f fi ` decidable: `Dec(P)` or: `P ∨ Q` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` false: `False` not: `¬A` top: `Top` prop: `ℙ` bfalse: `ff` sq_type: `SQType(T)` guard: `{T}` bnot: `¬bb` assert: `↑b` has-value: `(a)↓`
Lemmas referenced :  value-type-has-value int-value-type le_int_wf bool_wf eqtt_to_assert assert_of_le_int decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesis intEquality sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache extract_by_obid independent_isectElimination lambdaFormation unionElimination equalityElimination productElimination dependent_functionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination callbyvalueReduce

Latex:
\mforall{}[a,b:\mBbbZ{}].    (imax(a;b)  =  imax(b;a))

Date html generated: 2017_04_14-AM-09_14_25
Last ObjectModification: 2017_02_27-PM-03_51_44

Theory : int_2

Home Index