### Nuprl Lemma : imax_ub

`∀a,b,c:ℤ.  (a ≤ imax(b;c) `⇐⇒` (a ≤ b) ∨ (a ≤ c))`

Proof

Definitions occuring in Statement :  imax: `imax(a;b)` le: `A ≤ B` all: `∀x:A. B[x]` iff: `P `⇐⇒` Q` or: `P ∨ Q` int: `ℤ`
Definitions unfolded in proof :  imax: `imax(a;b)` all: `∀x:A. B[x]` has-value: `(a)↓` uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` implies: `P `` Q` bool: `𝔹` unit: `Unit` it: `⋅` btrue: `tt` uiff: `uiff(P;Q)` and: `P ∧ Q` ifthenelse: `if b then t else f fi ` iff: `P `⇐⇒` Q` guard: `{T}` or: `P ∨ Q` decidable: `Dec(P)` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` false: `False` not: `¬A` top: `Top` prop: `ℙ` rev_implies: `P `` Q` bfalse: `ff` sq_type: `SQType(T)` bnot: `¬bb` assert: `↑b`
Lemmas referenced :  value-type-has-value int-value-type le_int_wf bool_wf eqtt_to_assert assert_of_le_int decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf le_wf or_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation callbyvalueReduce cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_pairFormation inrFormation dependent_functionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp instantiate cumulativity independent_functionElimination inlFormation

Latex:
\mforall{}a,b,c:\mBbbZ{}.    (a  \mleq{}  imax(b;c)  \mLeftarrow{}{}\mRightarrow{}  (a  \mleq{}  b)  \mvee{}  (a  \mleq{}  c))

Date html generated: 2017_04_14-AM-09_14_10
Last ObjectModification: 2017_02_27-PM-03_51_30

Theory : int_2

Home Index