### Nuprl Lemma : s-insert_wf

`∀[T:Type]. ∀[x:T]. ∀[L:T List].  (s-insert(x;L) ∈ T List) supposing T ⊆r ℤ`

Proof

Definitions occuring in Statement :  s-insert: `s-insert(x;l)` list: `T List` uimplies: `b supposing a` subtype_rel: `A ⊆r B` uall: `∀[x:A]. B[x]` member: `t ∈ T` int: `ℤ` universe: `Type`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` all: `∀x:A. B[x]` nat: `ℕ` implies: `P `` Q` false: `False` ge: `i ≥ j ` guard: `{T}` prop: `ℙ` subtype_rel: `A ⊆r B` or: `P ∨ Q` s-insert: `s-insert(x;l)` so_lambda: `so_lambda(x,y,z.t[x; y; z])` top: `Top` so_apply: `x[s1;s2;s3]` cons: `[a / b]` colength: `colength(L)` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` squash: `↓T` sq_stable: `SqStable(P)` uiff: `uiff(P;Q)` and: `P ∧ Q` le: `A ≤ B` not: `¬A` less_than': `less_than'(a;b)` true: `True` decidable: `Dec(P)` iff: `P `⇐⇒` Q` rev_implies: `P `` Q` subtract: `n - m` nil: `[]` it: `⋅` so_lambda: `λ2x.t[x]` so_apply: `x[s]` sq_type: `SQType(T)` less_than: `a < b`
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache unionElimination isect_memberEquality voidEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality intEquality instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[L:T  List].    (s-insert(x;L)  \mmember{}  T  List)  supposing  T  \msubseteq{}r  \mBbbZ{}

Date html generated: 2017_04_14-AM-08_44_39
Last ObjectModification: 2017_02_27-PM-03_32_32

Theory : list_0

Home Index