### Nuprl Lemma : count-append

`∀[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[L1,L2:A List].  (count(P;L1 @ L2) ~ count(P;L1) + count(P;L2))`

Proof

Definitions occuring in Statement :  count: `count(P;L)` append: `as @ bs` list: `T List` bool: `𝔹` uall: `∀[x:A]. B[x]` function: `x:A ⟶ B[x]` add: `n + m` universe: `Type` sqequal: `s ~ t`
Definitions unfolded in proof :  count: `count(P;L)` uall: `∀[x:A]. B[x]` member: `t ∈ T` top: `Top` all: `∀x:A. B[x]` nat: `ℕ` implies: `P `` Q` false: `False` ge: `i ≥ j ` uimplies: `b supposing a` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` not: `¬A` and: `P ∧ Q` prop: `ℙ` subtype_rel: `A ⊆r B` guard: `{T}` or: `P ∨ Q` cons: `[a / b]` colength: `colength(L)` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` decidable: `Dec(P)` nil: `[]` it: `⋅` so_lambda: `λ2x.t[x]` so_apply: `x[s]` sq_type: `SQType(T)` less_than: `a < b` squash: `↓T` less_than': `less_than'(a;b)` bool: `𝔹` unit: `Unit` btrue: `tt` uiff: `uiff(P;Q)` ifthenelse: `if b then t else f fi ` bfalse: `ff` bnot: `¬bb` assert: `↑b`
Lemmas referenced :  reduce-append nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases reduce_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int reduce_cons_lemma bool_wf eqtt_to_assert add-associates reduce_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf zero-add ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation hypothesisEquality setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality equalityElimination functionEquality universeEquality isect_memberFormation

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L1,L2:A  List].    (count(P;L1  @  L2)  \msim{}  count(P;L1)  +  count(P;L2))

Date html generated: 2017_04_14-AM-09_28_08
Last ObjectModification: 2017_02_27-PM-04_01_45

Theory : list_1

Home Index