### Nuprl Lemma : filter_functionality

`∀[A:Type]. ∀[L:A List]. ∀[f1,f2:A ⟶ 𝔹].  filter(f1;L) ~ filter(f2;L) supposing f1 = f2 ∈ (A ⟶ 𝔹)`

Proof

Definitions occuring in Statement :  filter: `filter(P;l)` list: `T List` bool: `𝔹` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` function: `x:A ⟶ B[x]` universe: `Type` sqequal: `s ~ t` equal: `s = t ∈ T`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` all: `∀x:A. B[x]` nat: `ℕ` implies: `P `` Q` false: `False` ge: `i ≥ j ` uimplies: `b supposing a` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` not: `¬A` top: `Top` and: `P ∧ Q` prop: `ℙ` subtype_rel: `A ⊆r B` guard: `{T}` or: `P ∨ Q` cons: `[a / b]` colength: `colength(L)` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` decidable: `Dec(P)` nil: `[]` it: `⋅` so_lambda: `λ2x.t[x]` so_apply: `x[s]` sq_type: `SQType(T)` less_than: `a < b` squash: `↓T` less_than': `less_than'(a;b)` iff: `P `⇐⇒` Q` assert: `↑b` ifthenelse: `if b then t else f fi ` btrue: `tt` true: `True` rev_implies: `P `` Q`
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal_wf bool_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma list_wf bool_subtype_base iff_imp_equal_bool and_wf assert_elim assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom functionEquality cumulativity functionExtensionality applyEquality equalityTransitivity equalitySymmetry because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination universeEquality addLevel levelHypothesis

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[f1,f2:A  {}\mrightarrow{}  \mBbbB{}].    filter(f1;L)  \msim{}  filter(f2;L)  supposing  f1  =  f2

Date html generated: 2017_04_14-AM-09_31_36
Last ObjectModification: 2017_02_27-PM-04_03_06

Theory : list_1

Home Index