### Nuprl Lemma : filter_is_nil3

`∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  filter(P;L) ~ [] supposing (∀x∈L.¬↑P[x])`

Proof

Definitions occuring in Statement :  l_all: `(∀x∈L.P[x])` l_member: `(x ∈ l)` filter: `filter(P;l)` nil: `[]` list: `T List` assert: `↑b` bool: `𝔹` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` so_apply: `x[s]` not: `¬A` set: `{x:A| B[x]} ` function: `x:A ⟶ B[x]` universe: `Type` sqequal: `s ~ t`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` all: `∀x:A. B[x]` nat: `ℕ` implies: `P `` Q` false: `False` ge: `i ≥ j ` uimplies: `b supposing a` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` not: `¬A` top: `Top` and: `P ∧ Q` prop: `ℙ` so_lambda: `λ2x.t[x]` so_apply: `x[s]` subtype_rel: `A ⊆r B` guard: `{T}` or: `P ∨ Q` cons: `[a / b]` colength: `colength(L)` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` decidable: `Dec(P)` nil: `[]` it: `⋅` sq_type: `SQType(T)` less_than: `a < b` squash: `↓T` less_than': `less_than'(a;b)` iff: `P `⇐⇒` Q` bool: `𝔹` unit: `Unit` btrue: `tt` uiff: `uiff(P;Q)` ifthenelse: `if b then t else f fi ` bfalse: `ff` bnot: `¬bb` assert: `↑b`
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf l_all_wf not_wf assert_wf l_member_wf bool_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma l_all_wf_nil product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma l_all_cons eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot cons_wf list_wf list-subtype
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality functionExtensionality setEquality equalityTransitivity equalitySymmetry functionEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination equalityElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].    filter(P;L)  \msim{}  []  supposing  (\mforall{}x\mmember{}L.\mneg{}\muparrow{}P[x])

Date html generated: 2017_04_14-AM-09_23_18
Last ObjectModification: 2017_02_27-PM-03_58_29

Theory : list_1

Home Index