### Nuprl Lemma : l_disjoint_nil

`∀[A:Type]. ∀[L:A List].  l_disjoint(A;[];L)`

Proof

Definitions occuring in Statement :  l_disjoint: `l_disjoint(T;l1;l2)` nil: `[]` list: `T List` uall: `∀[x:A]. B[x]` universe: `Type`
Definitions unfolded in proof :  l_disjoint: `l_disjoint(T;l1;l2)` uall: `∀[x:A]. B[x]` member: `t ∈ T` all: `∀x:A. B[x]` not: `¬A` implies: `P `` Q` false: `False` and: `P ∧ Q` uimplies: `b supposing a` prop: `ℙ`
Lemmas referenced :  null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse and_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution productElimination lemma_by_obid hypothesis isectElimination hypothesisEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination lambdaEquality dependent_functionElimination because_Cache isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].    l\_disjoint(A;[];L)

Date html generated: 2016_05_14-AM-07_55_55
Last ObjectModification: 2015_12_26-PM-04_49_52

Theory : list_1

Home Index