### Nuprl Lemma : last-mapfilter

`∀[T:Type]. ∀[f:Top]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].`
`  (last(mapfilter(f;P;L)) ~ if null(filter(P;L)) then ⊥ else f last(filter(P;L)) fi )`

Proof

Definitions occuring in Statement :  mapfilter: `mapfilter(f;P;L)` last: `last(L)` null: `null(as)` filter: `filter(P;l)` list: `T List` bottom: `⊥` ifthenelse: `if b then t else f fi ` bool: `𝔹` uall: `∀[x:A]. B[x]` top: `Top` apply: `f a` function: `x:A ⟶ B[x]` universe: `Type` sqequal: `s ~ t`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` all: `∀x:A. B[x]` nat: `ℕ` implies: `P `` Q` false: `False` ge: `i ≥ j ` uimplies: `b supposing a` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` not: `¬A` top: `Top` and: `P ∧ Q` prop: `ℙ` subtype_rel: `A ⊆r B` guard: `{T}` or: `P ∨ Q` last: `last(L)` mapfilter: `mapfilter(f;P;L)` select: `L[n]` nil: `[]` it: `⋅` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` ifthenelse: `if b then t else f fi ` btrue: `tt` cons: `[a / b]` colength: `colength(L)` decidable: `Dec(P)` so_lambda: `λ2x.t[x]` so_apply: `x[s]` sq_type: `SQType(T)` less_than: `a < b` squash: `↓T` less_than': `less_than'(a;b)` bool: `𝔹` unit: `Unit` uiff: `uiff(P;Q)` bfalse: `ff` bnot: `¬bb` assert: `↑b`
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma map_nil_lemma null_nil_lemma stuck-spread base_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma bool_wf eqtt_to_assert map_cons_lemma null_cons_lemma last-cons mapfilter_wf top_wf assert_wf filter_wf5 subtype_rel_dep_function l_member_wf subtype_rel_self set_wf subtype_rel_list eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf null_wf assert_of_null
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality because_Cache unionElimination baseClosed promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality instantiate imageElimination functionExtensionality equalityElimination setEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:Top].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].
(last(mapfilter(f;P;L))  \msim{}  if  null(filter(P;L))  then  \mbot{}  else  f  last(filter(P;L))  fi  )

Date html generated: 2017_04_17-AM-07_52_32
Last ObjectModification: 2017_02_27-PM-04_25_42

Theory : list_1

Home Index