### Nuprl Lemma : lsum-mul-const

`∀[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ]. ∀[c:ℤ].  (Σ(c * f[x] | x ∈ L) = (c * Σ(f[x] | x ∈ L)) ∈ ℤ)`

Proof

Definitions occuring in Statement :  lsum: `Σ(f[x] | x ∈ L)` l_member: `(x ∈ l)` list: `T List` uall: `∀[x:A]. B[x]` so_apply: `x[s]` set: `{x:A| B[x]} ` function: `x:A ⟶ B[x]` multiply: `n * m` int: `ℤ` universe: `Type` equal: `s = t ∈ T`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` all: `∀x:A. B[x]` nat: `ℕ` implies: `P `` Q` false: `False` ge: `i ≥ j ` uimplies: `b supposing a` not: `¬A` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` top: `Top` and: `P ∧ Q` prop: `ℙ` or: `P ∨ Q` so_lambda: `λ2x.t[x]` so_apply: `x[s]` decidable: `Dec(P)` cons: `[a / b]` le: `A ≤ B` less_than': `less_than'(a;b)` colength: `colength(L)` nil: `[]` it: `⋅` guard: `{T}` sq_type: `SQType(T)` less_than: `a < b` squash: `↓T` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` subtype_rel: `A ⊆r B` l_member: `(x ∈ l)` select: `L[n]` cand: `A c∧ B` nat_plus: `ℕ+` uiff: `uiff(P;Q)` iff: `P `⇐⇒` Q` rev_implies: `P `` Q` true: `True`
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases lsum_nil_lemma decidable__equal_int intformnot_wf intformeq_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma l_member_wf nil_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-le subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf lsum_cons_lemma equal_wf squash_wf true_wf add_functionality_wrt_eq length_of_cons_lemma add_nat_plus length_wf_nat decidable__lt nat_plus_properties add-is-int-iff false_wf cons_wf length_wf select_wf lsum_wf subtype_rel_sets_simple cons_member subtype_rel_self iff_weakening_equal mul-distributes istype-nat list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination because_Cache functionIsType setIsType promote_hyp hypothesis_subsumption productElimination equalityIstype dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase multiplyEquality pointwiseFunctionality productIsType inrFormation_alt addEquality imageMemberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[c:\mBbbZ{}].
(\mSigma{}(c  *  f[x]  |  x  \mmember{}  L)  =  (c  *  \mSigma{}(f[x]  |  x  \mmember{}  L)))

Date html generated: 2020_05_19-PM-09_47_23
Last ObjectModification: 2019_11_12-PM-11_31_42

Theory : list_1

Home Index