### Nuprl Lemma : map-filter-proof2

`∀[T,A:Type]. ∀[f:T ⟶ A]. ∀[P:T ⟶ 𝔹]. ∀[Q:A ⟶ 𝔹].`
`  ∀[L:T List]. (map(f;filter(P;L)) ~ filter(Q;map(f;L))) supposing ∀x:T. Q (f x) = P x`

Proof

Definitions occuring in Statement :  filter: `filter(P;l)` map: `map(f;as)` list: `T List` bool: `𝔹` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` all: `∀x:A. B[x]` apply: `f a` function: `x:A ⟶ B[x]` universe: `Type` sqequal: `s ~ t` equal: `s = t ∈ T`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` top: `Top` all: `∀x:A. B[x]` nat: `ℕ` implies: `P `` Q` false: `False` ge: `i ≥ j ` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` not: `¬A` and: `P ∧ Q` prop: `ℙ` subtype_rel: `A ⊆r B` guard: `{T}` or: `P ∨ Q` cons: `[a / b]` colength: `colength(L)` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` decidable: `Dec(P)` nil: `[]` it: `⋅` so_lambda: `λ2x.t[x]` so_apply: `x[s]` sq_type: `SQType(T)` less_than: `a < b` squash: `↓T` less_than': `less_than'(a;b)` compose: `f o g`
Lemmas referenced :  filter-map nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma bool_wf bool_subtype_base list_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation hypothesisEquality setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality functionEquality universeEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[Q:A  {}\mrightarrow{}  \mBbbB{}].
\mforall{}[L:T  List].  (map(f;filter(P;L))  \msim{}  filter(Q;map(f;L)))  supposing  \mforall{}x:T.  Q  (f  x)  =  P  x

Date html generated: 2017_04_17-AM-08_37_28
Last ObjectModification: 2017_02_27-PM-04_57_51

Theory : list_1

Home Index