### Nuprl Lemma : not-not-excluded-middle-quot-true

`∀P:ℙ. (¬¬⇃(P ∨ (¬P)))`

Proof

Definitions occuring in Statement :  quotient: `x,y:A//B[x; y]` prop: `ℙ` all: `∀x:A. B[x]` not: `¬A` or: `P ∨ Q` true: `True`
Definitions unfolded in proof :  false: `False` uimplies: `b supposing a` so_apply: `x[s1;s2]` so_lambda: `λ2x y.t[x; y]` or: `P ∨ Q` uall: `∀[x:A]. B[x]` prop: `ℙ` member: `t ∈ T` implies: `P `` Q` not: `¬A` all: `∀x:A. B[x]`
Lemmas referenced :  not-not-excluded-middle trivial-quotient-true equiv_rel_true true_wf or_wf quotient_wf not_wf
Rules used in proof :  dependent_functionElimination voidElimination independent_functionElimination universeEquality independent_isectElimination lambdaEquality sqequalRule hypothesis because_Cache hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}P:\mBbbP{}.  (\mneg{}\mneg{}\00D9(P  \mvee{}  (\mneg{}P)))

Date html generated: 2017_04_14-AM-07_40_04
Last ObjectModification: 2017_04_11-AM-05_07_16

Theory : quot_1

Home Index