### Nuprl Lemma : quotient_qinc

`∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  T ⊆r (x,y:T//E[x;y]) supposing EquivRel(T;x,y.E[x;y])`

Proof

Definitions occuring in Statement :  equiv_rel: `EquivRel(T;x,y.E[x; y])` quotient: `x,y:A//B[x; y]` uimplies: `b supposing a` subtype_rel: `A ⊆r B` uall: `∀[x:A]. B[x]` prop: `ℙ` so_apply: `x[s1;s2]` function: `x:A ⟶ B[x]` universe: `Type`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` subtype_rel: `A ⊆r B` prop: `ℙ`
Lemmas referenced :  subtype_quotient equiv_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality independent_isectElimination hypothesis axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    T  \msubseteq{}r  (x,y:T//E[x;y])  supposing  EquivRel(T;x,y.E[x;y])

Date html generated: 2019_06_20-PM-00_32_08
Last ObjectModification: 2018_09_17-PM-07_02_00

Theory : quot_1

Home Index