### Nuprl Lemma : rel_or_wf

`∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  (R1 ∨ R2 ∈ T ⟶ T ⟶ ℙ)`

Proof

Definitions occuring in Statement :  rel_or: `R1 ∨ R2` uall: `∀[x:A]. B[x]` prop: `ℙ` member: `t ∈ T` function: `x:A ⟶ B[x]` universe: `Type`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` rel_or: `R1 ∨ R2` infix_ap: `x f y` prop: `ℙ`
Lemmas referenced :  or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality functionEquality cumulativity universeEquality Error :functionIsType,  Error :universeIsType,  because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R1  \mvee{}  R2  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})

Date html generated: 2019_06_20-PM-00_31_05
Last ObjectModification: 2018_09_26-PM-00_39_31

Theory : relations

Home Index