### Nuprl Lemma : map-tuple_wf

`∀[n:ℕ]. ∀[A,B:Type List].`
`  ∀[f:⋂i:ℕn. (A[i] ⟶ B[i])]. ∀[t:tuple-type(A)].  (map-tuple(n;f;t) ∈ tuple-type(B)) `
`  supposing (||A|| = n ∈ ℤ) ∧ (||B|| = n ∈ ℤ)`

Proof

Definitions occuring in Statement :  map-tuple: `map-tuple(len;f;t)` tuple-type: `tuple-type(L)` select: `L[n]` length: `||as||` list: `T List` int_seg: `{i..j-}` nat: `ℕ` uimplies: `b supposing a` uall: `∀[x:A]. B[x]` and: `P ∧ Q` member: `t ∈ T` isect: `⋂x:A. B[x]` function: `x:A ⟶ B[x]` natural_number: `\$n` int: `ℤ` universe: `Type` equal: `s = t ∈ T`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` uimplies: `b supposing a` and: `P ∧ Q` nat: `ℕ` implies: `P `` Q` false: `False` ge: `i ≥ j ` not: `¬A` satisfiable_int_formula: `satisfiable_int_formula(fmla)` exists: `∃x:A. B[x]` all: `∀x:A. B[x]` top: `Top` prop: `ℙ` or: `P ∨ Q` map-tuple: `map-tuple(len;f;t)` select: `L[n]` nil: `[]` it: `⋅` so_lambda: `λ2x y.t[x; y]` so_apply: `x[s1;s2]` eq_int: `(i =z j)` subtract: `n - m` ifthenelse: `if b then t else f fi ` btrue: `tt` cons: `[a / b]` le: `A ≤ B` bool: `𝔹` unit: `Unit` uiff: `uiff(P;Q)` bfalse: `ff` sq_type: `SQType(T)` guard: `{T}` bnot: `¬bb` assert: `↑b` rev_implies: `P `` Q` iff: `P `⇐⇒` Q` int_seg: `{i..j-}` lelt: `i ≤ j < k` subtype_rel: `A ⊆r B` so_lambda: `λ2x.t[x]` so_apply: `x[s]` true: `True` less_than': `less_than'(a;b)` decidable: `Dec(P)` pi1: `fst(t)` pi2: `snd(t)` squash: `↓T` cand: `A c∧ B`
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases tupletype_nil_lemma stuck-spread istype-base length_of_nil_lemma product_subtype_list length_of_cons_lemma non_neg_length intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma tupletype_cons_lemma null_wf eqtt_to_assert assert_of_null eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base list_wf tuple-type_wf int_seg_wf int_seg_properties length_wf_nat set_subtype_base le_wf int_subtype_base subtract-1-ge-0 eq_int_wf assert_of_eq_int neg_assert_of_eq_int null_nil_lemma btrue_wf null_cons_lemma bfalse_wf btrue_neq_bfalse iff_imp_equal_bool true_wf istype-false le_weakening2 nil_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__equal_int add-is-int-iff itermSubtract_wf int_term_value_subtract_lemma false_wf subtract_wf add-member-int_seg2 equal_wf squash_wf istype-universe select_cons_tl cons_wf decidable__lt length_wf subtype_rel_self iff_weakening_equal subtype_rel_dep_function select_wf add-subtract-cancel subtype_rel-equal add-associates add-swap add-commutes zero-add nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  universeEquality instantiate unionElimination baseClosed promote_hyp hypothesis_subsumption equalityElimination because_Cache Error :equalityIsType1,  cumulativity Error :equalityIsType3,  Error :isectIsType,  Error :equalityIsType4,  applyEquality intEquality Error :equalityIsType2,  baseApply closedConclusion Error :dependent_set_memberEquality_alt,  Error :productIsType,  applyLambdaEquality pointwiseFunctionality imageElimination functionEquality addEquality imageMemberEquality minusEquality independent_pairEquality Error :functionIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[A,B:Type  List].
\mforall{}[f:\mcap{}i:\mBbbN{}n.  (A[i]  {}\mrightarrow{}  B[i])].  \mforall{}[t:tuple-type(A)].    (map-tuple(n;f;t)  \mmember{}  tuple-type(B))
supposing  (||A||  =  n)  \mwedge{}  (||B||  =  n)

Date html generated: 2019_06_20-PM-02_03_18
Last ObjectModification: 2018_10_08-PM-06_21_19

Theory : tuples

Home Index