Nuprl Lemma : lifting-2_wf

`∀[C,B,A:Type]. ∀[f:A ⟶ B ⟶ C].  (lifting-2(f) ∈ bag(A) ⟶ bag(B) ⟶ bag(C))`

Proof

Definitions occuring in Statement :  lifting-2: `lifting-2(f)` bag: `bag(T)` uall: `∀[x:A]. B[x]` member: `t ∈ T` function: `x:A ⟶ B[x]` universe: `Type`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` lifting-2: `lifting-2(f)`
Lemmas referenced :  lifting2_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[C,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].    (lifting-2(f)  \mmember{}  bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C))

Date html generated: 2016_05_15-PM-03_01_59
Last ObjectModification: 2015_12_27-AM-09_28_17

Theory : bags

Home Index