Nuprl Lemma : lifting-bag-combine-decide-name_eq

  (⋃b∈case name_eq(a;b) of inl(x) => F[x] inr(x) => G[x].f[b] case name_eq(a;b)
   of inl(x) =>
   inr(x) =>


Definitions occuring in Statement :  bag-combine: x∈bs.f[x] name_eq: name_eq(x;y) uall: [x:A]. B[x] top: Top so_apply: x[s] decide: case of inl(x) => s[x] inr(y) => t[y] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  lifting-bag-combine-decide top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom hypothesisEquality because_Cache

    (\mcup{}b\mmember{}case  name\_eq(a;b)  of  inl(x)  =>  F[x]  |  inr(x)  =>  G[x].f[b]  \msim{}  case  name\_eq(a;b)
      of  inl(x)  =>
      |  inr(x)  =>

Date html generated: 2016_05_15-PM-03_10_20
Last ObjectModification: 2015_12_27-AM-09_25_11

Theory : bags

Home Index