Nuprl Lemma : lifting-bag-combine-decide

  (⋃b∈case of inl(x) => F[x] inr(x) => G[x].f[b] case of inl(x) => ⋃b∈F[x].f[b] inr(x) => ⋃b∈G[x].f[b])


Definitions occuring in Statement :  bag-combine: x∈bs.f[x] uall: [x:A]. B[x] top: Top so_apply: x[s] decide: case of inl(x) => s[x] inr(y) => t[y] sqequal: t
Definitions unfolded in proof :  member: t ∈ T top: Top uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] uimplies: supposing a
Lemmas referenced :  lifting-strict-decide top_wf strict4-bag-combine
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity thin baseClosed hypothesisEquality isect_memberEquality voidElimination voidEquality cut lemma_by_obid hypothesis because_Cache isect_memberFormation introduction sqequalAxiom sqequalRule sqequalHypSubstitution isectElimination independent_isectElimination

    (\mcup{}b\mmember{}case  a  of  inl(x)  =>  F[x]  |  inr(x)  =>  G[x].f[b]  \msim{}  case  a
      of  inl(x)  =>
      |  inr(x)  =>

Date html generated: 2016_05_15-PM-03_09_47
Last ObjectModification: 2016_01_16-AM-08_33_50

Theory : bags

Home Index