### Nuprl Lemma : exp-fastexp

`∀[i:ℤ]. ∀[n:ℕ].  (i^n ~ i^n)`

Proof

Definitions occuring in Statement :  fastexp: `i^n` exp: `i^n` nat: `ℕ` uall: `∀[x:A]. B[x]` int: `ℤ` sqequal: `s ~ t`
Definitions unfolded in proof :  guard: `{T}` sq_type: `SQType(T)` uimplies: `b supposing a` implies: `P `` Q` prop: `ℙ` sq_exists: `∃x:{A| B[x]}` so_apply: `x[s]` so_lambda: `λ2x.t[x]` all: `∀x:A. B[x]` subtype_rel: `A ⊆r B` fastexp: `i^n` member: `t ∈ T` uall: `∀[x:A]. B[x]`
Rules used in proof :  independent_isectElimination cumulativity rename setElimination isect_memberEquality sqequalAxiom independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity lambdaFormation because_Cache intEquality isectElimination hypothesisEquality sqequalRule sqequalHypSubstitution lambdaEquality hypothesis extract_by_obid instantiate thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (i\^{}n  \msim{}  i\^{}n)

Date html generated: 2016_07_08-PM-05_05_17
Last ObjectModification: 2016_07_05-PM-02_43_19

Theory : general

Home Index