### Nuprl Lemma : comb_for_interleaving_wf

`λT,L1,L2,L,z. interleaving(T;L1;L2;L) ∈ T:Type ⟶ L1:(T List) ⟶ L2:(T List) ⟶ L:(T List) ⟶ (↓True) ⟶ ℙ`

Proof

Definitions occuring in Statement :  interleaving: `interleaving(T;L1;L2;L)` list: `T List` prop: `ℙ` squash: `↓T` true: `True` member: `t ∈ T` lambda: `λx.A[x]` function: `x:A ⟶ B[x]` universe: `Type`
Definitions unfolded in proof :  member: `t ∈ T` squash: `↓T` uall: `∀[x:A]. B[x]` prop: `ℙ`
Lemmas referenced :  interleaving_wf squash_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType universeEquality

Latex:
\mlambda{}T,L1,L2,L,z.  interleaving(T;L1;L2;L)  \mmember{}  T:Type  {}\mrightarrow{}  L1:(T  List)  {}\mrightarrow{}  L2:(T  List)  {}\mrightarrow{}  L:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True\000C)  {}\mrightarrow{}  \mBbbP{}

Date html generated: 2019_10_15-AM-10_55_35
Last ObjectModification: 2018_10_09-AM-10_18_18

Theory : list!

Home Index