### Nuprl Lemma : fps-pascal_wf

`∀[r:CRng]. ∀[x,y:Atom].  (Δ(x,y) ∈ PowerSeries(r))`

Proof

Definitions occuring in Statement :  fps-pascal: `Δ(x,y)` power-series: `PowerSeries(X;r)` uall: `∀[x:A]. B[x]` member: `t ∈ T` atom: `Atom` crng: `CRng`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` fps-pascal: `Δ(x,y)` uimplies: `b supposing a` crng: `CRng` rng: `Rng` all: `∀x:A. B[x]`
Lemmas referenced :  fps-div_wf atom-valueall-type atom-deq_wf rng_one_wf fps-one_wf fps-sub_wf fps-add_wf fps-single_wf single-bag_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin atomEquality independent_isectElimination hypothesis hypothesisEquality setElimination rename because_Cache dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].    (\mDelta{}(x,y)  \mmember{}  PowerSeries(r))

Date html generated: 2016_05_15-PM-09_58_30
Last ObjectModification: 2015_12_27-PM-04_35_21

Theory : power!series

Home Index