### Nuprl Lemma : fps-single_wf

`∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[c:bag(X)].  (<c> ∈ PowerSeries(X;r))`

Proof

Definitions occuring in Statement :  fps-single: `<c>` power-series: `PowerSeries(X;r)` bag: `bag(T)` deq: `EqDecider(T)` uall: `∀[x:A]. B[x]` member: `t ∈ T` universe: `Type` crng: `CRng`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` fps-single: `<c>` power-series: `PowerSeries(X;r)` crng: `CRng` rng: `Rng`
Lemmas referenced :  ifthenelse_wf bag-eq_wf rng_car_wf rng_one_wf rng_zero_wf bag_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[c:bag(X)].    (<c>  \mmember{}  PowerSeries(X;r))

Date html generated: 2016_05_15-PM-09_47_25
Last ObjectModification: 2015_12_27-PM-04_40_57

Theory : power!series

Home Index